The structure/function relationships of oligomycin sensitivity conferring protein (OSCP) of bovine mitochondrial ATP synthase were studied by nested deletion mutagenesis, followed by analyses of the resultant OSCPs for their ability to restore partial reactions of ATP synthesis in OSCP-depleted F1-F0 complexes. Our results indicate that, from the N-terminus of OSCP, up to 13 amino acid residues could be deleted without any effect on OSCP coupling activity. However, deletion of 16 or more residues led to a slow decline in the ability of resultant mutant forms to restore ATP synthesis. Compared to the wild-type form of OSCP, deletion mutant ND-28 (deletion of residues 1-28) is 50% as active in its ability to reconstitute ATP-Pi exchange activity. Detailed analyses of mutant ND-28 revealed that it was able to bind to the membrane segment (F0) of ATP synthase and restore oligomycin-sensitive ATPase activity in OSCP-depleted F1-F0 complexes. However, it did not bind to soluble segment F1, nor did it confer cold stability to either soluble F1 or reconstituted F1-F0 complex. On the other hand, studies on nested deletions on the C-terminal end indicate that three residues could be deleted without compromising the energy-coupling activity of OSCP. However, truncations of five or more residues caused an impairment in the ability of resultant mutant forms to restore ATP-Pi exchange activity in OSCP-depleted complexes. Mutant CD-10 (deletion of amino acids 181-190) was completely ineffective as a coupling factor. Detailed analyses of this mutant revealed that the subunit was able to bind to soluble F1 segment and confer cold stability to the enzyme but was neither able to associate with the membrane segment (F0) nor able to reconstitute high oligomycin sensitivity in depleted F1-F0 complexes. We take these data to suggest that the N-terminal end of OSCP corresponding to residues G16-N28 is essential for binding of the coupling factor to soluble F1 but not for coupling the energy of proton translocation to the synthesis of ATP; on the other hand, the carboxyl-terminal end of OSCP containing amino acids K181-M186 is important for F0-OSCP interactions as well as for the coupling of the energy of delta microH+ during the synthesis of ATP. These results suggest a model for OSCP in which the N-terminus is associated with the F1 segment and the C-terminus is associated with the F0 segment, while the central part of the polypeptide forms three or more helices constituting the stalk in the intact F1F0 enzyme.
Earlier studies on oligomycin sensitivity conferring protein (OSCP) of bovine mitochondrial ATP synthase (F1Fo) indicated that a deletion mutant form (CD-10), lacking the last 10 amino acid residues (K181-L190), was unable to bind to the Fo segment, or reconstitute energy-linked reactions in OSCP-depleted F1Fo complexes [Joshi et al. (1996) Biochemistry 35, 12094-12103]. So far as known, the K181-L190 region of all mammalian species of OSCP harbors four charged residues at positions 181, 184, 187, and 188, while secondary structure predictions suggest that the K178-M186 region has a high propensity to form a helix [Ovchinnikov et al. (1984) FEBS Lett. 166, 19-22; Higuti et al. (1993) Biochim. Biophys. Acta 1172, 311-314; Grinkevich et al. ( 1994) Biol. Membr. 11, 310-323; Engelbrecht et al. (1991) Z. Naturforsch., C: Biochem., Biophys., Biol.,Virol. 46, 759-764]. Present studies were undertaken to clarify the role of individual amino acids in the K181-L190 region in OSCP-stimulated energy coupling. Our data show that simultaneous replacements of all four charged residues by uncharged but polar glutamines, or of K181-R184 by apolar alanines, had no significant influence either on the total alpha-helix content of the mutant forms or on the ability of mutant OSCPs to couple energy-linked reactions. However, a substitution of the K181-M186 region by six proline residues led to complete loss in the coupling activity of the resultant mutant. A detailed analysis of the 6-proline mutant form revealed that the variant was indistinguishable from WT OSCP with respect to expression characteristics, affinity for S-Sepharose, and ability to interact with F1, but was unable to complex with the Fo segment. These studies suggest that the global protein structure was not destabilized. The helix potential prediction analyses showed that the 6-proline OSCP displayed a marked decrease in the helix-forming propensity in the region corresponding to residues 175-190. Quantitative CD analyses to measure helical content demonstrated that both of the mutant forms 6-proline-OSCP and CD-10 had a somewhat lower alpha-helical content compared to WT protein, while synthetic peptides corresponding in sequence to the K178-L190 region displayed a high propensity to form a helix. Taken together, these results suggest that the C-terminal end of OSCP encompasses an alpha-helix which is crucial for high-affinity interactions of the C-terminal end of this subunit with Fo in the F1Fo enzyme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.