The stability and durability of total hip reconstruction is dependent on many factors that include the design and anatomic orientation of prosthetic components. An analysis of femoral component head size and acetabular component orientation shows an interdependency of these variables and joint stability. Increased femoral component head size can increase hip stability by increasing the prosthetic impingement-free range of hip motion and by increasing the inferior head displacement required before hip dislocation. Increasing the femoral head size from 22 mm to 40 mm increases the required displacement for dislocation by about 5 mm with the acetabular component at 45°of abduction; however, increasing acetabular component abduction greatly diminishes this stability advantage of larger femoral heads. Vertical acetabular component orientation and femoral component head subluxation are each predicted to more than double the tensile stress with acetabular component polyethylene compared with components at 45°of abduction. With a desirable acetabular component orientation, the use of larger femoral heads may result in improved joint stability and durable use of polyethylene. With high abduction acetabular component orientation, the use of larger femoral heads contributes little to joint stability and contributes to elevated stress within the polyethylene that may result in implant failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.