Improved prevention and treatment of drug addiction will require deeper understanding of genetic factors contributing to susceptibility to excessive drug use. Intravenous operant self-administration methods have greatly advanced understanding of behavioral traits related to addiction. However, these methods are not suitable for large-scale genetic experiments in mice. Selective breeding of mice can aggregate 'addiction alleles' in a model that has the potential to identify coordinated effects of multiple genes. We produced mouse lines that orally self-administer high (MAHDR) or low (MALDR) amounts of methamphetamine, representing the first demonstration of selective breeding for self-administration of any psychostimulant drug. Conditioned place preference and taste aversion results indicate that MAHDR mice are relatively more sensitive to the rewarding effects and less sensitive to the aversive effects of methamphetamine, compared to MALDR mice. These results validate the oral route of self-administration for investigation of the motivational effects of methamphetamine and provide a viable alternative to intravenous self-administration procedures. Gene expression results for a subset of genes relevant to addiction-related processes suggest differential regulation by methamphetamine of apoptosis and immune pathways in the nucleus accumbens of MAHDR and MALDR mice. In each line, methamphetamine reduced an allostatic state by bringing gene expression back toward 'normal' levels. Genes differentially expressed in the drug-naïve state, including Slc6a4 (serotonin transporter), Htr3a (serotonin receptor 3A), Rela [nuclear factor κB (NFκB)] and Fos (cFos), represent candidates whose expression levels may predict methamphetamine consumption and susceptibility to methamphetamine reward and aversion.
Amphetamines have rewarding and aversive effects. Relative sensitivity to these effects may be a better predictor of vulnerability to addiction than sensitivity to one of these effects alone. We tested this hypothesis in a dose-response study in a second replicate set of mouse lines selectively bred for high vs low methamphetamine (MA) drinking (MADR). Replicate 2 high (MAHDR-2) and low (MALDR-2) MA drinking mice were bred based on MA consumption in a two-bottle choice procedure, and examined for novel tastant drinking. Sensitivities to the rewarding and aversive effects of several doses of MA (0.5, 2, and 4 mg/kg) were measured using a place conditioning procedure. After conditioning, mice were tested in a drug-free and then drug-present state for time spent in the saline- and MA-paired contexts. Similar to the first set of MADR lines, by the end of selection, MAHDR-2 mice consumed about 6 mg MA/kg/18 h, compared to nearly no MA in MALDR-2 mice, but had similar taste preference ratios. MAHDR-2 mice exhibited place preference in both the drug-free and drug-present tests, and no significant place aversion. In contrast, MALDR-2 mice exhibited no place preference or aversion during the drug-free test, but robust place aversion in the drug-present test. These data extend our preliminary findings from the first set of MADR lines, and support the hypothesis that the combination of greater sensitivity to the rewarding effects of MA and insensitivity to the aversive effects of MA is genetically associated with heightened risk for MA consumption.
In an effort to identify genes that may be important for drug-abuse liability, we mapped behavioral quantitative trait loci (bQTL) for sensitivity to the locomotor stimulant effect of methamphetamine (MA) using two mouse lines that were selectively bred for high MA-induced activity (HMACT) or low MA-induced activity (LMACT). We then examined gene expression differences between these lines in the nucleus accumbens, using 20 U74Av2 Affymetrix microarrays and quantitative polymerase chain reaction (qPCR). Expression differences were detected for several genes, including Casein Kinase 1 Epsilon (Csnkle), glutamate receptor, ionotropic, AMPA1 (GluR1), GABA B1 receptor (Gabbr1), and dopamine- and cAMP-regulated phosphoprotein of 32 kDa (Darpp-32). We used the www.WebQTL.org database to identify QTL that regulate the expression of the genes identified by the microarrays (expression QTL; eQTL). This approach identified an eQTL for Csnkle on Chromosome 15 (LOD = 3.8) that comapped with a bQTL for the MA stimulation phenotype (LOD = 4.5), suggesting that a single allele may cause both traits. The chromosomal region containing this QTL has previously been associated with sensitivity to the stimulant effects of cocaine. These results suggest that selection was associated with (and likely caused) altered gene expression that is partially attributable to different frequencies of gene expression polymorphisms. Combining classical genetics with analysis of whole-genome gene expression and bioinformatic resources provides a powerful method for provisionally identifying genes that influence complex traits. The identified genes provide excellent candidates for future hypothesis-driven studies, translational genetic studies, and pharmacological interventions.
Methamphetamine (MA) and cocaine induce behavioral effects primarily through modulation of dopamine neurotransmission. However, the genetic regulation of sensitivity to these two drugs may be similar or disparate. Using selective breeding, lines of mice were produced with extreme sensitivity (high MA activation; HMACT) and insensitivity (low MA activation; LMACT) to the locomotor stimulant effects of acute MA treatment. Studies were performed to determine whether there is pleiotropic genetic influence on sensitivity to the locomotor stimulant effect of MA and to other MA-and cocaine-related behaviors. The HMACT line exhibited more locomotor stimulation in response to several doses of MA and cocaine, compared to the LMACT line. Both lines exhibited locomotor sensitization to 2 mg/kg of MA and 10 mg/kg of cocaine; the magnitude of sensitization was similar in the two lines. However, the lines differed in the magnitude of sensitization to a 1 mg/kg dose of MA, a dose that did not produce a ceiling effect that may confound interpretation of studies using higher doses. The LMACT line consumed more MA and cocaine in a two-bottle choice drinking paradigm; the lines consumed similar amounts of saccharin and quinine, although the HMACT line exhibited slightly elevated preference for a low concentration of saccharin. These results suggest that some genes that influence sensitivity to the acute locomotor stimulant effect of MA have a pleiotropic influence on the magnitude of behavioral sensitization to MA and sensitivity to the stimulant effects of cocaine. Further, extreme sensitivity to MA may protect against MA and cocaine self-administration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.