The synthesis and CNS activity of a series of 34 substituted bicyclic pyrazolines are described. Ten of these compounds were also screened for antiinflammatory activity. One of the compounds (15) exhibited significant antiinflammatory activity in the carrageenan-induced edema test.
As part of a program to discover potent antihypertensive analogues of diltiazem (3a), we prepared 1-benzazepin-2-ones (4). Benzazepinones competitively displace radiolabeled diltiazem, and show the same absolute stereochemical preferences at the calcium channel receptor protein. Derivatives of 4 containing a trifluoromethyl substituent in the fused aromatic ring show potent and long-acting antihypertensive activity. Studies of the metabolism of 4 lead to the metabolically stable antihypertensive calcium channel blockers 5a and 5c. Benzazepinone 5a is a longer acting and more potent antihypertensive agent than the second generation diltiazem analogue TA-3090 (3e).
Substituted 1,2,3,4-tetrahydroaminonaphthols were found to be calcium channel blockers with antihypertensive properties. These compounds also possessed adrenergic beta-receptor blocking activity. From the structure-activity studies, no clear correlation emerged between the in vitro calcium channel blocking activity and the acute anti-hypertensive activity in cannulated spontaneously hypertensive rats. Extensive pharmacological testing of selected compounds indicated that aminonaphthols are antihypertensive agents with many pharmacological properties. The relative contribution of various pharmacological actions toward the observed antihypertensive activity is unclear. Since the clinically useful calcium channel blocker verapamil is structurally related to these compounds, one of the aminonaphthols, trans-3-[(3,3-diphenylpropyl)amino]-1,2,3,4-tetrahydro-6,7 -dimethoxy-2-naphthalenol (12), was compared with verapamil for calcium channel blocking activity, adrenergic blocking activity, and catecholamine-depleting activity. Both compounds were found to be equipotent in these test systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.