The use of marine controlled-source electromagnetic EM (CSEM) sounding to detect thin resistive layers at depths below the seafloor has been exploited recently to assess the resistivity of potential hydrocarbon reservoirs before drilling. We examine the sensitivity of the CSEM method to such layers with forward and inverse modeling in one and three dimensions. The 3D modeling demonstrates that if both source and receivers are over a tabular 3D target, 1D modeling predicts the observed response to very high accuracy. Experimental design can thus be based on 1D analysis in which hundreds of range and frequency combinations can be computed to find the optimal survey parameters for a given target structure. Modeling in three dimensions shows that the vertical electric-field response is largest over the edges of a 3D target. The 3D modeling also suggests that a target body needs to have a diameter twice the burial depth to be reliably seen by CSEM sounding. A simple air-wave model (energy propagating from source to receiver via the atmosphere) allows the effects of the target layer and atmosphere to be separated and shows where sensitivity to the target is diminished or lost because of finite water depth as a function of range, frequency, and seafloor resistivity. Unlike DC resistivity sounding, the marine CSEM method is not completely T-equivalent and, in principle, can resolve resistivity and thickness separately. Smooth inversion provides an estimate of the method's resolving power and highlights the fact that although the radial CSEM fields contain most of the sensitivity to the thin resistive target, inverted alone they produce only increasing resistivity with depth. Inclusion of the radial mode CSEM data forces the recovery of the thin resistor, but magnetotelluric data can be used more effectively to achieve the same result.
The electromagnetic fields surrounding a thin, subseabed resistive disk in response to a deep-towed, time-harmonic electric dipole antenna are investigated using a newly developed 3D Cartesian, staggered-grid modeling algorithm. We demonstrate that finite-difference and finite-volume methods for solving the governing curl-curl equation yield identical, complex-symmetric coefficient matrices for the resulting [Formula: see text] linear system of equations. However, the finite-volume approach has an advantage in that it naturally admits quadrature integration methods for accurate representation of highly compact or exponentially varying source terms constituting the right side of the resulting linear system of equations. This linear system is solved using a coupled two-term recurrence, quasi-minimal residual algorithm that doesnot require explicit storage of the coefficient matrix, thus reducing storage costs from [Formula: see text] to [Formula: see text] complex, double-precision words with no decrease in computational performance. The disk model serves as a generalized representation of any number of resistive targets in the marine environment, including basaltic sills, carbonates, and stratigraphic hydrocarbon traps. We show that spatial variations in electromagnetic phase computed over the target are sensitive to the disk boundaries and depth, thus providing a useful complement to the usual amplitude-versus-offset analysis. Furthermore, we estimate through the calculation of Fréchet sensitivity kernels those regions of the 3D model which have the greatest effect on seafloor electric fields for a given source/receiver configuration. The results show that conductivity variations within the resistive disk have a stronger influence on the observed signal than do variations in the surrounding sediment conductivity at depth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.