The average pore size in currently producing unconventional, liquids-rich reservoirs is estimated to be less than 100 nm. At this nano-pore scale, capillary and surface disjoining force interactions (like van der Waals, structural, and adsorption) play an important role on phase behavior that is not considered in conventional PVT studies. In this paper, a comprehensive discussion of thermodynamics required to adequately model phase behavior that can impact multiphase flow in unconventional, liquids-rich reservoirs is presented. Three oil samples from different unconventional reservoirs are used to generate results. The impact of confinement manifests itself in the form of reduction (suppression) of the liquid pressure that the first bubble can form when compared to the bulk fluid measurements that are conducted in PVT cells. It is shown that the suppression of the bubble-point pressure impacts saturated portion of the liquid formation volume factor and extends the undersaturated portion of the curve. The gas composition is different for each supersaturation level and the gas is composed of lighter components as the supersaturation (bubble point suppression) increases.
The effectiveness of hydraulic fracture stimulation in low-permeability reservoirs was evaluated by mapping microseismic events related to rock fracturing. The geometry of stage by stage event point sets were used to infer fracture orientation, particularly in the case where events line up along an azimuth, or have a planar distribution in three dimensions. Locations of microseismic events may have a higher degree of uncertainty when there is a low signal-to-noise ratio (either due to low magnitude or to propagation effects). Low signal-to-noise events are not as accurately located in the reservoir, or may fall below the detectability limit, so that the extent of fracture stimulated reservoir may be underestimated. In the Bakken Formation of the Williston Basin, we combined geologic analysis with process-based and stochastic fracture modeling to build multiple possible discrete fracture network (DFN) model realizations. We then integrated the geologic model with production data and numerical simulation to evaluate the impact on estimated ultimate recovery (EUR). We tested assumptions used to create the DFN model to determine their impact on dynamic calibration of the simulation model, and their impact on predictions of EUR. Comparison of simulation results, using fracture flow properties generated from two different calibrated DFN scenarios, showed a 16% difference in amount of oil ultimately produced from the well. The amount of produced water was strongly impacted by the geometry of the DFN model. The character of the DFN significantly impacts the relative amounts of fluids produced. Monitoring water cut with production can validate the appropriate DFN scenario, and provide critical information for the optimal method for well production. The results indicated that simulation of enhanced permeability using induced microseismicity to constrain a fracture flow property model is an effective way to evaluate the performance of reservoirs stimulated by hydraulic fracture treatments.
The average pore size in unconventional, liquids-rich reservoirs is estimated to be less than 100 nm. At this nano-pore scale, capillary forces play an important role on phase behavior that is not considered in conventional PVT studies. Confinement on phase behavior of black-oil fluids manifests itself as bubble point pressure suppression, extension of the undersaturated portion of the formation volume factor curve, and alteration of the equilibrium gas composition. Studies show that the magnitude of the bubble point suppression is more than the capillary pressure and may amount to hundreds of psi. These phenomena can be modeled through compositional solution of the phase behavior at differing gas- and oil-phase pressure values that are due to capillary pressure. However, black-oil simulators cannot perform the compositional phase behavior calculations to estimate the total bubble point suppression due to confinement. In this study a correlation that expresses the bubble point pressure suppression as a function of the capillary pressure and the solution gas oil ratio (Rs calculated through conventional PVT which is the input in black oil simulator) was developed, such that it can be used as a simulation model input. The correlation data was based on three unconventional oil samples evaluated at different saturation pressures and compositions. To use the correlation, a modified black oil simulator that can handle the PVT data at different oil- and gas-phase pressure values is required. The source code of the black oil simulator used in this study was modified to include the total bubble point suppression into the PVT calculations. The impact of the confined phase behavior on flow was quantified through simulation runs. The results showed that the grid blocks with different capillary pressure values reach the bubble point at different times. During depletion, the grid blocks with higher capillary pressure values remained in undersaturated conditions longer, impacting the gas production and pressure profiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.