Lignin is an abundant biopolymer that has native interfacial functions but aggregates strongly in aqueous media. Polyacrylamide was grafted onto kraft lignin nanoparticles using reversible addition-fragmentation chain transfer (RAFT) chemistry to form polymer-grafted lignin nanoparticles (PGLNs) that tune aggregation strength while retaining interfacial activities in forming Pickering emulsions. Polymer graft density on the particle surface, ionic strength, and initial water and cyclohexane volume fractions were varied and found to have profound effects on emulsion characteristics, including emulsion volume fraction, droplet size, and particle interfacial concentration that were attributed to changes in lignin aggregation and hydrophobic interactions. In particular, salt concentration was found to have a significant effect on aggregation, zeta potential, and interfacial tension, which was attributed to changes in solubility of both the kraft lignin and the polyacrylamide grafts. Dynamic light scattering, UV-vis spectroscopy, optical microscopy, and tensiometry were used to quantify emulsion properties and nanoparticle behavior. Under all conditions, the emulsions exhibited relatively fast creaming but were stable against coalescence and Ostwald ripening for a period of months. All emulsions were also oil-in-water (o/w) emulsions, as predicted by the Bancroft rule, and no catastrophic phase inversions were observed for any nanoparticle compositions. We conclude that lower grafting density of polyacrylamide on a lignin core resulted in high levels of interfacial activity, as characterized by higher concentration at the water-cyclohexane interface with a corresponding decrease in interfacial tension. These results indicate that the interfacial properties of polymer-grafted lignin nanoparticles are primarily due to the native hydrophobic interactions of the lignin core. These results suggest that the forces that drive aggregation are also correlated with interfacial activities, and polymer-nanoparticle interactions are critical for optimizing interfacial activities. Controlled radical polymerization is a powerful tool for polymer grafting that can leverage the intrinsic interfacial functions of lignin for the formation of Pickering emulsions.
Kraft lignin grafted with hydrophilic polymers has been prepared using reversible addition-fragmentation chain-transfer (RAFT) polymerization and investigated for use as a surfactant. In this preliminary study, polyacrylamide and poly(acrylic acid) were grafted from a lignin RAFT macroinitiator at average initiator site densities estimated to be 2 per particle and 17 per particle. The target degrees of polymerization were 50 and 100, but analysis of cleaved polyacrylamide was consistent with a higher average molecular weight, suggesting not all sites were able to participate in the polymerization. All materials were readily soluble in water, and dynamic light scattering data indicate polymer-grafted lignin coexisted in isolated and aggregated forms in aqueous media. The characteristic size was 15-20 nm at low concentrations, and aggregation appeared to be a stronger function of degree of polymerization than graft density. These species were surface active, reducing the surface tension to as low as 60 dyn/cm at 1 mg/mL, and a greater decrease was observed than for polymer-grafted silica nanoparticles, suggesting that the lignin core was also surface active. While these lignin surfactants were soluble in water, they were not soluble in hexanes. Thus, it was unexpected that water-in-oil emulsions formed in all surfactant compositions and solvent ratios tested, with average droplet sizes of 10-20 μm. However, although polymer-grafted lignin has structural features similar to nanoparticles used in Pickering emulsions, its interfacial behavior was qualitatively different. While at air-water interfaces, the hydrophilic grafts promote effective reductions in surface tension, we hypothesize that the low grafting density in these lignin surfactants favors partitioning into the hexanes side of the oil-water interface because collapsed conformations of the polymer grafts improve interfacial coverage and reduce water-hexanes interactions. We propose that polymer-grafted lignin surfactants can be considered as random patchy nanoparticles with mixed hydrophilic and hydrophobic domains that result in unexpected interfacial behaviors. Further studies are necessary to clarify the molecular basis of these phenomena, but grafting of hydrophilic polymers from kraft lignin via radical polymerization could expand the use of this important biopolymer in a broad range of surfactant applications.
A machine learning approach to understanding and optimizing complex physical systems is presented in the context of polymeric dispersants.
Superplasticizers are a class of anionic polymer dispersants used to inhibit aggregation in hydraulic cement, lowering the yield stress of cement pastes to improve workability and reduce water requirements. The plant-derived biopolymer lignin is commonly used as a low-cost/low-performance plasticizer, but attempts to improve its effects on cement rheology through copolymerization with synthetic monomers have not led to significant improvements. Here we demonstrate that kraft lignin can form the basis for high-performance superplasticizers in hydraulic cement, but the molecular architecture must be based on a lignin core with a synthetic-polymer corona that can be produced via controlled radical polymerization. Using slump tests of ordinary Portland cement pastes, we show that polyacrylamide-grafted lignin prepared via reversible addition-fragmentation chain transfer polymerization can reduce the yield stress of cement paste to similar levels as a leading commercial polycarboxylate ether superplasticizer at concentrations ten-fold lower, although the lignin material produced via controlled radical polymerization does not appear to reduce the dynamic viscosity of cement paste as effectively as the polycarboxylate superplasticizer, despite having a similar affinity for the individual mineral components of ordinary Portland cement. In contrast, polyacrylamide copolymerized with a methacrylated kraft lignin via conventional free radical polymerization having a similar overall composition did not reduce the yield stress or the viscosity of cement pastes. While further work is required to elucidate the mechanism of this effect, these results indicate that controlling the architecture of polymer-grafted lignin can significantly enhance its performance as a superplasticizer for cement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.