Ditch cleaning (DC) is increasingly applied to facilitate forest regeneration following clear-cutting in Fennoscandinavia. However, its impact on the ecosystem carbon and greenhouse gas (GHG) balances is poorly understood. We conducted chamber measurements to assess the initial DC effects on carbon dioxide (CO2) and methane (CH4) fluxes in a recent forest clear-cut on wet mineral soil in boreal Sweden. Measurements were conducted in two adjacent areas over two pre-treatments (2018/19) and two years (2020/21) after conducting DC in one area. We further assessed the spatial variation of fluxes at three distances (4, 20, 40 m) from ditches. We found that DC lowered the water table level by 12 ± 2 cm (mean ± standard error) and topsoil moisture by 0.12 ± 0.01 m3 m−3. DC had a limited initial effect on the net CO2 exchange and its component fluxes. CH4 emissions were low during the dry pre-treatment years but increased particularly in the control area during the wet years of 2020/21. Distance to ditch had no consistent effects on CO2 and CH4 fluxes. Model extrapolations suggest that annual carbon emissions decreased over the four years from 6.7 ± 1.4 to 1.6 ± 1.6 t-C ha−1 year−1, without treatment differences. Annual CH4 emissions contributed <2.5% to the carbon balance but constituted 39% of the GHG balance in the control area during 2021. Overall, our study suggests that DC modified the internal carbon cycling but without significant impact on the carbon and GHG balances.
Boreal peatlands represent a biogeochemically unique and diverse environment in high-latitude landscape. They represent a long-term globally significant sink for carbon dioxide and a source of methane, hence playing an important role in regulating the global climate. There is an increasing interest in deciphering peatland biogeochemical processes to improve our understanding of how anthropogenic and climate change effects regulate the peatland biogeochemistry and greenhouse gas balances. At present, most studies investigating land-atmosphere exchanges of peatland ecosystems are commonly based on single-tower setups, which require the assumption of homogeneous conditions during upscaling to the landscape. However, the spatial organization of peatland complexes might feature large heterogeneity due to its varying underlying topography and vegetation composition. Little is known about how well single site studies represent the spatial variations of biogeochemical processes across entire peatland complexes. The recently established Kulbäcksliden Research Infrastructure (KRI) includes five peatland study sites located less than 3 km apart, thus providing a unique opportunity to explore the spatial variation in ecosystem-scale processes across a typical boreal peatland complex. All KRI sites are equipped with eddy covariance flux towers combined with installations for detailed monitoring of biotic and abiotic variables, as well as catchment-scale hydrology and hydrochemistry. Here, we review studies that were conducted in the Kulbäcksliden area and provide a description of the site characteristics as well as the instrumentation available at the KRI. We highlight the value of long-term infrastructures with ecosystem-scale and replicated experimental sites to advance our understanding of peatland biogeochemistry, hydrology, ecology, and its feedbacks on the environment and climate system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.