The endometrium undergoes cyclic remodelling throughout the menstrual cycle in preparation for embryo implantation which occurs in a short window during the mid-secretory phase. It is during this short ‘receptive window’ that the endometrial luminal epithelium acquires adhesive capacity permitting blastocysts firm adhesion to the endometrium to establish pregnancy. Dysregulation in any of these steps can compromise embryo implantation resulting in implantation failure and infertility. Many factors contribute to these processes including TGF-β, LIF, IL-11 and proteases. Tripeptidyl peptidase 1 (TPP1) is a is a lysosomal serine-type protease however the contribution of the TPP1 to receptivity is unknown. We aimed to investigate the role of TPP1 in receptivity in humans.In the current study, TPP1 was expressed in both epithelial and stromal compartments of the endometrium across the menstrual cycle. Expression was confined to the cytoplasm of luminal and glandular epithelial cells and stromal cells. Staining of mid-secretory endometrial tissues of women with normal fertility and primary unexplained infertility showed reduced immunostaining intensity of TPP1 in luminal epithelial cells of infertile tissues compared to fertile tissues. By contrast, TPP1 levels in glandular epithelial and stromal cells were comparable in both groups in the mid-secretory phase. Inhibition of TPP1 using siRNA compromised HTR8/SVneo (trophoblast cell line) spheroid adhesion on siRNA-transfected Ishikawa cells (endometrial epithelial cell line) in vitro. This impairment was associated with decreased sirtuin 1 (SIRT1), BCL2 and p53 mRNA and unaltered, CD44, CDH1, CDH2, ITGB3, VEGF A, OSTEOPONTIN, MDM2, CASP4, MCL1, MMP2, ARF6, SGK1, HOXA-10, LIF, and LIF receptor gene expression between treatment groups. siRNA knockdown of TPP1 in primary human endometrial stromal cells did not affect decidualization nor the expression of decidualization markers prolactin (PRL) and insulin-like growth factor-binding protein 1 (IGFBP1). Taken together, our data strongly suggests a role for TPP1 in endometrial receptivity via its effects on epithelial cell adhesion and suggests reduced levels associated with unexplained infertility may contribute to implantation failure.
Heterozygous mutations in the human SOX9 gene cause the skeletal malformation syndrome campomelic dysplasia which in 75% of 46, XY individuals is associated with male-to-female sex reversal. Although studies in homozygous Sox9 knockout mouse models confirmed that SOX9 is critical for testis development, mice heterozygous for the Sox9-null allele were reported to develop normal testes. This led to the belief that the SOX9 dosage requirement for testis differentiation is different between humans, which often require both alleles, and mice, in which one allele is sufficient. However, in prior studies, gonadal phenotypes in heterozygous Sox9 XY mice were assessed only by either gross morphology, histological staining or analyzed on a mixed genetic background. In this study, we conditionally inactivated Sox9 in somatic cells of developing gonads using the Nr5a1-Cre mouse line on a pure C57BL/6 genetic background. Section and whole-mount immunofluorescence for testicular and ovarian markers showed that XY Sox9 heterozygous gonads developed as ovotestes. Quantitative droplet digital PCR confirmed a 50% reduction of Sox9 mRNA as well as partial sex reversal shown by an upregulation of ovarian genes. Our data show that haploinsufficiency of Sox9 can perturb testis development in mice, suggesting that mice may provide a more accurate model of human disorders/differences of sex development than previously thought.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.