Following stepping in place on a rotating treadmill, subjects inadvertently rotate when asked to step in place without vision. This response is called podokinetic after-rotation (PKAR). The purpose of this study was to determine whether PKAR transfers across tasks with different lower limb configurations, that is, from kneeling to stepping. We hypothesized that PKAR would transfer from kneeling to stepping for two reasons. First, there have been several demonstrations of robust PKAR transfer from forward to backward walking, stepping to hopping, running to walking, and from one limb to another. Second, we thought that afferent information regarding hip rotation was likely a key source of information to guide podokinetic adaptation and since hip rotation would be preserved in both stimulation conditions we expected to see little difference between the conditions. We compared the PKAR responses recorded in standing from 13 healthy young volunteers after either standard stepping on a rotating treadmill or stepping while kneeling (kneel-stepping) on a rotating treadmill. Subjects performed two sessions of podokinetic (PK) stimulation, one stepping and one kneel-stepping on a rotating treadmill. Following the PK stimulation, subjects were blindfolded and asked to step in place in standing. Angular velocity of trunk rotation during PKAR from the two sessions was calculated and compared. The maximum angular velocities of PKAR recorded in stepping were significantly higher following the stepping session than following the kneel-stepping session (9.10 +/- 8.9 and 2.94 +/- 1.6 deg/s, respectively). This was despite the fact that hip rotation excursion during PK stimulation was significantly greater in kneel-stepping (18.7 +/- 3.6 deg) than in stepping (12.2 +/- 2.6 deg). These results indicate very little transfer from kneeling to stepping and suggest that afferent information regarding hip rotation is not the only or even the major source of limb position sense information used to drive locomotor trajectory adaptation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.