These data represent the most extensive compilation of cardiovascular gene expression information to date. They further demonstrate the untapped potential of genome research for investigating questions related to cardiovascular biology and represent a first-generation genome-based resource for molecular cardiovascular medicine.
We have cloned and characterized another alternatively spliced isoform of the human four-and-a-half LIM domain protein 1 (FHL1), designated FHL1C. FHL1C contains a single zinc finger and two tandem repeats of LIM domains at the N-terminus followed by a putative RBP-J binding region at the C-terminus. FHL1C shares the same N-terminal two-and-a-half LIM domains with FHL1 but different C-terminal protein sequences. Due to the absence of the exon 4 in FHL1C, there is a frame-shift in the 3' coding region. Sequence analysis indicated that FHL1C is the human homolog of murine KyoT2. The Northern blot and RT-PCR results revealed that FHL1 is widely expressed in human tissues, including skeletal muscle and heart at a high level, albeit as a relatively low abundance transcript in brain, placenta, lung, liver, kidney, pancreas, and testis. In contrast, FHL1C is specifically expressed in testis, skeletal muscle, and heart at a relatively low level compared with FHL1. The expression of FHL1C transcripts was also seen in aorta, left atrium, left, and right ventricles of human heart at low level. Immunoblot analysis using affinity-purified anti-FHL1C antipeptide antibodies confirmed a 20 kDa protein of FHL1C in human skeletal muscle and heart. Unlike FHL1B, which is another FHL1 isoform recently reported by our group and localized predominantly in the nucleus [Lee et al., 1999], FHL1C is localized both in the nucleus and cytoplasm of mammalian cell.
Human cyotsolic malate dehydrogenase (MDH1) is important in transporting NADH equivalents across the mitochondrial membrane, controlling tricarboxylic acid (TCA) cycle pool size and providing contractile function. Cellular localization studies indicate that MDH1 mRNA expression has a strong tissue-specific distribution, being expressed primarily in cardiac and skeletal muscle and in the brain, at intermediate levels in the spleen, kidney, intestine, liver, and testes and at low levels in lung and bone marrow. The observed MDH1 localizations reflect the role of NADH in the support of a variety of functions in different organs. These functions are primarily related to aerobic energy production for muscle contraction, neuronal signal transmission, absorption/resorption functions, collagen-supporting functions, phagocytosis of dead cells, and processes related to gas exchange and cell division. During neonatal development, MDH1 is expressed in human embryonic heart as early as the 3rd month and then is over-expressed from the 5th month until the birth. The expression of MDH1 is maintained in the adult heart but is not present in levels as high as in the fetus. Finally, over-expression of MDH1 is found in left ventricular cardiac muscle of dilated cardiomyopathy (DCM) patients when contrasted to the diseased non-DCM and normal heart muscle by in situ hybridization and Western blot. These observations are compatible with the activation of glucose oxidation in relatively hypoxic environments of fetal and hypertrophied myocardium.
We characterized a human cDNA clone encoding a 36-kDa carboxyl terminal LIM domain protein with a PDZ domain at the amino terminal. This full-length cDNA clone has a predicted open reading frame (ORF) of 329 amino-acid residues. The ORF of this cDNA encodes the human homolog of rat CLP36, and the putative protein is named human 36-kDa carboxyl terminal LIM domain protein (hCLIM1, nomenclature approved by the HUGO/GDB Nomenclature Committee). The hCLIM1 probe was used to hybridize with poly(A)+ RNA of various human tissues. Strong signals were detected in heart and skeletal muscle; moderate signals were detected in spleen, small intestine, colon, placenta, and lung; weaker levels were detected in liver, thymus, kidney, prostate, and pancreas; and no observable signals were detected in brain, testis, ovary, and peripheral blood leukocytes. The hCLIM1 gene was studied by fluorescence in situ hybridization (FISH), somatic cell hybrid analysis, and radiation hybrid mapping, and it is located at the human chromosome 10q26.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.