The importance of considering the compound effects of multiple hazards has increased in recent years due to their catastrophic impacts on human lives and property. Compound effects correspond to events with multiple concurrent or consecutive drivers, e.g., heavy storms, coastal flooding, high tides, and sea level rise (SLR). There is a recent evidence on inundation caused by SLR-driven groundwater rise, and there is a distinct knowledge gap in understanding the compound inundation effects of this phenomenon considering the important hydrologic and hydraulic considerations under compound events. To fill this knowledge gap, we developed a novel analytical framework to understand the movements of the surface flow under typical precipitation events considering their interaction with uprising groundwater and SLR in a coastal watershed located in Oakland Flatlands, CA, USA, home to several disadvantaged communities. This modelling approach simulates the dynamics of compound flooding in two dimensions of the earth surface in a fine resolution, which is critical for devising proper flood management strategies. The reason to focus on disadvantaged coastal communities is that such communities typically encounter disproportionate environmental injustices due to the lack of sufficient drainage capacity in their infrastructure. Our results show that by considering the compound effect of SLR, groundwater inundation and precipitation flooding, the drainage capacity of infrastructure will be substantially exceeded, such that over 700 acres of the built infrastructure could be flooded. This is a considerable increase compared to scenarios that do not consider compound effect, or scenarios that consider inappropriate combinations of driving factors. In sum, our results highlight the significance of considering compound effects in the coastal inundation analyses, with a particular emphasis on the role of groundwater rise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.