In the current research and development era, Human Activity Recognition (HAR) plays a vital role in analyzing the movements and activities of a human being. The main objective of HAR is to infer the current behaviour by extracting previous information. Now-a-days, the continuous improvement of living condition of human beings changes human society dramatically. To detect the activities of human beings, various devices, such as smartphones and smart watches, use different types of sensors, such as multi modal sensors, non-video based and video-based sensors, and so on. Among the entire machine learning approaches, tasks in different applications adopt extensively classification techniques, in terms of smart homes by active and assisted living, healthcare, security and surveillance, making decisions, tele-immersion, forecasting weather, official tasks, and prediction of risk analysis in society. In this paper, we perform three classification algorithms, Sequential Minimal Optimization (SMO), Random Forest (RF), and Simple Logistic (SL) with the two HAR datasets, UCI HAR and WISDM, downloaded from the UCI repository. The experiment described in this paper uses the WEKA tool to evaluate performance with the matrices, Kappa statistics, relative absolute error, mean absolute error, ROC Area, and PRC Area by 10-fold cross validation technique. We also provide a comparative analysis of the classification algorithms with the two determined datasets by calculating the accuracy with precision, recall, and F-measure metrics. In the experimental results, all the three algorithms with the UCI HAR datasets achieve nearly the same accuracy of 98%.The RF algorithm with the WISDM dataset has the accuracy of 90.69%,better than the others.
In Cloud computing the user requests are passaged to data centers (DCs) to accommodate resources. It is essential to select the suitable DCs as per the user requests so that other requests should not be penalized in terms of time and cost. The searching strategies consider the execution time rather than the related penalties while searching DCs. In this work, we discuss Penalty Elimination-based DC Allocation (PE-DCA) using Guided Local Search (GLS) mechanism to locate suitable DCs with reduced cost, response time, and processing time. The PE-DCA addresses, computes, and eliminates the penalties involved in the cost and time through iterative technique using the defined objective and guide functions. The PE-DCA is implemented using CloudAnalyst with various configurations of user requests and DCs. We examine the PE-DCA and the execution after-effects of various costs and time parameters to eliminate the penalties and observe that the proposed mechanism performs best.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.