The distribution systems operate radially with meshed topologies thanks to tie-switches and sectionalizing switches consisting of the systems. The power distribution systems are undergoing evolutions strongly toward active distribution systems for reliability and quality of service enhancements through reconfiguration. The distributed generations are also one effective solution for the above objectives. A consumption time is one of the considerable issues that many existing methods have not been achieved for reconfiguration purpose. This paper brings an adaptive solution called modified sequential switch opening and exchange (MSSOE), which is carried out with MATLAB and MATPOWER tool, to overcome these issues. The fundamental loop has been proposed for the MSSOE method to reduce search space in the iteration process. In each step of the searching process, MSSOE observes that if any switches within the same loop of the selected tie-switch are deleted to avoid opening those switches in the next iteration. The process of MSSOE is done when the radial topology is given. The proposed method is tested with the standard IEEE 33-bus, IEEE 69-bus, and IEEE 119-bus distribution systems to observe the effectiveness of the MSSOE algorithm. Comparison to existing algorithms in terms of global solution and computation time conclude that the MSSOE is the best method.
Recently, DC-powered devices such as loads (USB plugs, chargers, LED lighting) and distributed energy resources (solar photovoltaic and battery energy storage) have been increasingly used. Therefore, their connection to the grid requires AC/DC converters, which raises the question of operating part of the grid in DC in order to connect DC loads to DC producers and storage. In Cambodia, the electrification rate is only about 82% of the population in 2021 in rural areas. The objective of this work is to propose a low voltage microgrid comprehensive planning tool for electrification of developing countries. From the data collected on consumption needs, the objective is to find the optimal electrification scheme, i.e., AC or AC/DC distribution, optimal topology and distributed energy resources allocation and operation for both grid-connected and off-grid mode. A set of technical, economic, and environmental key performance indicators allows for comparison of solutions. The interest and efficiency of such a tool are illustrated on a real case study, an island area. Moreover, uncertainties on load consumption are also considered to assess the sensitivity and robustness of the proposed algorithm. The results show that, although the overall cost of the hybrid AC/DC microgrid is slightly higher than that of the AC microgrid, it allows a gradual electrification avoiding large initial investments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.