METHODS Migration AssaysMigration assays were performed as described (3)(4)(5). Briefly, 16 h before the assay, 80% confluent 75 cm 2 flasks (Corning Costar) of human microvessel endothelial cells (HMVEC; Cambrex, Walkersville, MD), human coronary artery endothelial cells (HCAEC; Cambrex), human umbilical artery endothelial cells (HUAEC; Promocell, Heidelburg, Germany), or human umbilical vein endothelial cells (HUVEC; Promocell), were washed with Hank's Balanced Salt Solution (HBSS, Invitrogen) and serum-starved overnight in endothelial basal media (EBM-2, Cambrex) with 0.1% fatty-acid-free BSA (Sigma) and 0.5% fetal calf serum (FCS, Hyclone). The following day cells were lifted with Trypsin/EDTA solution (Promocell), mixed with an equal volume Trypsin Neutralization Solution (Promocell), and washed 3 times in migration media (EBM-2 with 0.1% fatty-acid-free BSA and 0.2% FCS). Cells were resuspended at a density of 1.5×10 6 cells/ml and were allowed to recover for 1 h at 37°C (5% CO 2 ). 3.75 × 10 4 cells were plated into each well of a 48-well Boyden chamber apparatus (NeuroProbe, Cabin John, MD), and the wells were overlayed with an 8 μm pore polycarbonate membrane (NeuroProbe) that had been previously coated with 50 μg/ml human fibronectin (Biomedical Technologies, Inc., Stoughton, MA). Experiments performed with membranes coated with acetylated 1% gelatin from porcine skin (Sigma, St. Louis, MO) gave similar results. The apparatus was assembled and stored inverted at 37°C (5% CO 2 ) for 2 h. The apparatus was then re-inverted and 52 μl of purified chemoattractants [murine netrin-1 (R&D Systems, Minneapolis, MN), chicken netrin-2 (R&D Systems), murine netrin-4 (R&D Systems), murine netrin-G1a (R&D Systems), human VEGF 165 (R&D Systems), or control/ migration media (EBM-2 with 0.1% fatty-acid-free BSA and 0.2% FCS) were added to the upper chambers, and the migration was allowed to proceed for 2 h at 37°C (5% CO 2 ). The membranes were then removed, fixed in methanol, stained with a Hema 3 stain set (Fisher Scientific, Pittsburgh, PA), and placed (migrated-side down) onto 50 × 75 mm glass slides. Before 90% mounting medium (in xylenes) and coverslips were applied, the non-migrated cells were removed from the exposed (non-migrated) side of the membrane with a moistened swab. Cells present on the migrated side of the membrane were manually counted (three random 200× fields per well), and data points for each experiment represent the average number of migrated cells from six separate wells (three 200× fields counted per well).Another method was employed in a separate laboratory to evaluate the effects of the netrins on mouse (MS1) endothelial cells (ATCC, Manassas, VA) using a modified Boyden chamber assay as described previously (6). Briefly, a 5 μm-polycarbonate filter (Poretics) was placed between upper and lower chamber. Cell suspensions (5×10 4 cells/well) were placed in the upper chamber, and the lower chamber was filled with serum-free medium containing
Guidance and patterning of axons are orchestrated by cell-surface receptors and ligands that provide directional cues. Interactions between the Robo receptor and Slit ligand families of proteins initiate signaling cascades that repel axonal outgrowth. Although the vascular and nervous systems grow as parallel networks, the mechanisms by which the vascular endothelial cells are guided to their appropriate positions remain obscure. We have identified a putative Robo homologue, Robo4, based on its differential expression in mutant mice with defects in vascular sprouting. In contrast to known neuronal Robo family members, the arrangement of the extracellular domains of Robo4 diverges significantly from that of all other Robo family members. Moreover, Robo4 is specifically expressed in the vascular endothelium during murine embryonic development. We show that Robo4 binds Slit and inhibits cellular migration in a heterologous expression system, analogous to the role of known Robo receptors in the nervous system. Immunoprecipitation studies indicate that Robo4 binds to Mena, a known effector of Robo-Slit signaling. Finally, we show that Robo4 is the only Robo family member expressed in primary endothelial cells and that application of Slit inhibits their migration. These data demonstrate that Robo4 is a bona fide member of the Robo family and may provide a repulsive cue to migrating endothelial cells during vascular development.
Optic cup morphogenesis (OCM) generates the basic structure of the vertebrate eye. Although it is commonly depicted as a series of epithelial sheet folding events, this does not represent an empirically supported model. Here, we combine four-dimensional imaging with custom cell tracking software and photoactivatable fluorophore labeling to determine the cellular dynamics underlying OCM in zebrafish. Although cell division contributes to growth, we find it dispensable for eye formation. OCM depends instead on a complex set of cell movements coordinated between the prospective neural retina, retinal pigmented epithelium (RPE) and lens. Optic vesicle evagination persists for longer than expected; cells move in a pinwheel pattern during optic vesicle elongation and retinal precursors involute around the rim of the invaginating optic cup. We identify unanticipated movements, particularly of central and peripheral retina, RPE and lens. From cell tracking data, we generate retina, RPE and lens subdomain fate maps, which reveal novel adjacencies that might determine corresponding developmental signaling events. Finally, we find that similar movements also occur during chick eye morphogenesis, suggesting that the underlying choreography is conserved among vertebrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.