Forced convection of micropolar fluids through a periodic array of wavy-wall channels has been analyzed by using a simple coordinate transformation method and the spline alternatingdirection implicit method. The effects of the wavy amplitude, the micropolar parameter, and the Reynolds number on skin friction coefficient and Nusselt number have been examined in detail. Results show that the flow through a sinusoidally curved converging-diverging channel forms a strong forward flow and a reticular vortex within each wave for larger Reynolds number and larger wavy amplitudes. For the micropolar fluids, increasing the vortex viscosity causes an increase in the total viscosity of the fluid, thus the skin friction coefficient increases while the Nusselt number decreases. Also, the influence of vortex viscosity on the minimum cross section of the wavy-wall channel and on a tiny change of the maximum cross section is manifest. Moreover, both Reynolds number and wavy amplitude tend to enhance the total heat transfer rate, regardless of whether the fluids are Newtonian or micropolar fluids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.