Amyloid formation is implicated in more than 20 human diseases, yet the mechanism by which fibrils form is not well understood. We use 2D infrared spectroscopy and isotope labeling to monitor the kinetics of fibril formation by human islet amyloid polypeptide (hIAPP or amylin) that is associated with type 2 diabetes. We find that an oligomeric intermediate forms during the lag phase with parallel β-sheet structure in a region that is ultimately a partially disordered loop in the fibril. We confirm the presence of this intermediate, using a set of homologous macrocyclic peptides designed to recognize β-sheets. Mutations and molecular dynamics simulations indicate that the intermediate is on pathway. Disrupting the oligomeric β-sheet to form the partially disordered loop of the fibrils creates a free energy barrier that is the origin of the lag phase during aggregation. These results help rationalize a wide range of previous fragment and mutation studies including mutations in other species that prevent the formation of amyloid plaques.inhibitors | aggregation pathway | vibrational coupling T he misfolding of proteins into β-sheet-rich amyloid fibrils is associated with the pathology of more than 20 human diseases, including Alzheimer's, Parkinson, and Huntington diseases (1). Amyloid plaques are formed by masses of fibrils, but growing evidence suggests that the toxic species may be prefibrillar intermediates (2, 3). As a result, there is much interest in understanding the mechanism by which these proteins form fibrils and identifying intermediates in the aggregation pathway. However, obtaining structural information about intermediate species is difficult due to their transient nature. Solid-state NMR (ssNMR) and X-ray crystallography provide high-resolution structures of fibrils (4, 5) and optical techniques can track structural changes in real time (6, 7), but few techniques have both the structural and the temporal resolution to extract specific structural details about intermediates. Fragments have been trapped in intriguing oligomeric structures that may represent intermediate states (5,8) and transient secondary structures are known to exist from circular dichroism measurements and other experiments (9-11), but for full-length proteins it has been difficult to identify the specific residues that contribute to the secondary structure and thus understand their role in the aggregation mechanism. In this paper, we use 2D infrared (2D IR) spectroscopy and isotope labeling to monitor the structural evolution of the full-length human islet amyloid polypeptide (hIAPP or amylin), a 37-residue peptide implicated in type 2 diabetes. We observe the formation of a structured prefibrillar intermediate in a region that has long been known to influence aggregation, but that does not form well-ordered cross-β structure in the amyloid fibril. Its presence provides unique structural insights into the mechanism of amyloid aggregation and helps unify many seemingly inconsistent prior studies.Many studies on hIAPP have focused ...
While amyloid formation has been implicated in the pathology of over twenty human diseases, the rational design of amyloid inhibitors is hampered by a lack of structural information about amyloid-inhibitor complexes. We use isotope labeling and two-dimensional infrared spectroscopy to obtain a residue-specific structure for the complex of human amylin, the peptide responsible for islet amyloid formation in type 2 diabetes, with a known inhibitor, rat amylin. Based on its sequence, rat amylin should block formation of the C-terminal β-sheet, but at 8 hours after mixing rat amylin blocks the N-terminal β-sheet instead. At 24 hours after mixing, rat amylin blocks neither β-sheet and forms its own β-sheet most likely on the outside of the human fibrils. This is striking because rat amylin is natively disordered and not previously known to form amyloid β-sheets. The results show that even seemingly intuitive inhibitors may function by unforeseen and complex structural processes.
Energy transfer from the translational degrees of freedom to phonon modes is studied for isolated systems of two coaxial carbon nanotubes, which may serve as a nearly frictionless nano-oscillator. It is found that for oscillators with short nanotubes (less than 30 A) a rocking motion, occurring when the inner tube is pulled about 1/3 out of the outer tube, is responsible for significant phonon energy acquisitions. For oscillators with long nanotubes translational energies are mainly dissipated via a wavy deformation in the outer tube undergoing radial vibrations. Frictional forces between 10(-17) and 10(-14) N per atom are found for various dissipative mechanisms.
Infrared spectroscopy is playing an important role in the elucidation of amyloid fiber formation, but the coupling models that link spectra to structure are not well tested for parallel β-sheets. Using a synthetic macrocycle that enforces a two stranded parallel β-sheet conformation, we measured the lifetimes and frequency for six combinations of doubly 13C=18O labeled amide I modes using 2D IR spectroscopy. The average vibrational lifetime of the isotope labeled residues was 550 fs. The frequen cies of the labels ranged from 1585 to 1595 cm−1, with the largest frequency shift occurring for in-register amino acids. The 2D IR spectra of the coupled isotope labels were calculated from molecular dynamics simulations of a series of macrocycle structures generated from replica exchange dynamics to fully sample the conformational distribution. The models used to simulate the spectra include through-space coupling, through-bond coupling, and local frequency shifts caused by environment electrostatics and hydrogen bonding. The calculated spectra predict the linewidths and frequencies nearly quantitatively. Historically, the characteristic features of β-sheet infrared spectra have been attributed to through-space couplings such as transition dipole coupling. We find that frequency shifts of the local carbonyl groups due to nearest neighbor couplings and environmental factors are more important, while the through space couplings dictate the spectral intensities. As a result, the characteristic absorption spectra empirically used for decades to assign parallel β-sheet secondary structure arises because of a redistribution of oscillator strength, but the through-space couplings do not themselves dramatically alter the frequency distribution of eigenstates much more than already exists in random coil structures. Moreover, solvent exposed residues have amide I bands with >20 cm−1 linewidth. Narrower linewidths indicate that the amide I backbone is solvent protected inside the macrocycle. This work provides calculated and experimentally verified couplings for parallel β-sheets that can be used in structure-based models to simulate and interpret the infrared spectra of β-sheet containing proteins and protein assemblies, such as amyloid fibers.
We reported in a previous study (Zhao et al 2003 Phys. Rev. Lett. 91 75504) that energy transfer from the orderly intertube translational oscillation to intratube vibrational modes for an isolated system of two coaxial carbon nanotubes at low temperatures takes place primarily via two distinct types of collective motion of the carbon nanotubes, i.e., off-axial rocking motion of the inner tube and radial wavy motion of the outer tube, and that these types of motion may or may not occur for such a system, depending upon the amount of the initial extrusion of the inner tube out of the outer tube. Our present study, using microcanonical molecular dynamics (MD), indicates the existence of an energy threshold, largely independent of system sizes and configurations, for a double-walled nano-oscillator to deviate from the intertube translational oscillation and thus to encounter significant intertube friction. The frictional forces associated with several distinct dissipative mechanisms are all found to exhibit no proportional dependence upon the normal force between the two surfaces in relative sliding, contrary to the conventional understanding resulting from tribological studies of macroscopic systems. Furthermore, simulation has been performed at different initial temperatures, revealing a strong temperature dependence of friction in the early phase of oscillation. Finally, our studies of three-walled nano-oscillators show that an initial extrusion of the middle tube can cause inner-tube offaxial instabilities, leading to strong frictional effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.