Concomitant development of [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) aggregation and poly(3-hexylthiophene) (P3HT) crystallization in bulk heterojunction (BHJ) thin-film (ca. 85 nm) solar cells has been revealed using simultaneous grazing-incidence small-/wide-angle X-ray scattering (GISAXS/GIWAXS). With enhanced time and spatial resolutions (5 s/frame; minimum q ≈ 0.004 Å(-1)), synchrotron GISAXS has captured in detail the fast growth in size of PCBM aggregates from 7 to 18 nm within 100 s of annealing at 150 °C. Simultaneously observed is the enhanced crystallization of P3HT into lamellae oriented mainly perpendicular but also parallel to the substrate. An Avrami analysis of the observed structural evolution indicates that the faster PCBM aggregation follows a diffusion-controlled growth process (confined by P3HT segmental motion), whereas the slower development of crystalline P3HT nanograins is characterized by constant nucleation rate (determined by the degree of supercooling and PCBM demixing). These two competing kinetics result in local phase separation with space-filling PCBM and P3HT nanodomains less than 20 nm in size when annealing temperature is kept below 180 °C. Accompanying the morphological development is the synchronized increase in electron and hole mobilities of the BHJ thin-film solar cells, revealing the sensitivity of the carrier transport of the device on the structural features of PCBM and P3HT nanodomains. Optimized structural parameters, including the aggregate size and mean spacing of the PCBM aggregates, are quantitatively correlated to the device performance; a comprehensive network structure of the optimized BHJ thin film is presented.
We consider a head-on collision between two solitary waves on the surface of an inviscid homogeneous fluid. A perturbation method which in principle can generate an asymptotic series of all orders, is used to calculate the effects of the collision. We find that the waves emerging from (i.e. long after) the collision preserve their original identities to the third order of accuracy we have calculated. However a collision does leave imprints on the colliding waves with phase shifts and shedding of secondary waves. Each secondary wave group trails behind its primary, a solitary wave. The amplitude of the wave group diminishes in time because of dispersion. We have also calculated the maximum run-up amplitude of two colliding waves. The result checks with existing experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.