The complex and adaptable architecture of the plant root system in soil is of paramount importance for crop growth and performance. Root growth depends on the activity of the root apical meristem, an organized population of proliferating progenitor cells continuously replenished from a stem cell niche. Root branching, which greatly contributes to root system architecture in most dicot species, consists in de novo formation of new root meristems in existing root tissues. This phenomenon illustrates the ability of plants to repeatedly generate new tissues specialized in post-embryonic continuous growth and greatly impacts the elaboration of the root system architecture and its adaptation to environmental constraints. Here, we review the recent findings and models related to lateral root organogenesis in the dicot species Arabidopsis 2 thaliana, with emphasis on the mechanisms controlling de novo root meristem formation.Experimental evidence suggests that critical regulatory modules are common between embryonic and post-embryonic root meristem organogenesis, and that the lateral root formation molecular pathway is in part common with organ regeneration from callus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.