NeEstimator v2 is a completely revised and updated implementation of software that produces estimates of contemporary effective population size, using several different methods and a single input file. NeEstimator v2 includes three single-sample estimators (updated versions of the linkage disequilibrium and heterozygote-excess methods, and a new method based on molecular coancestry), as well as the two-sample (moment-based temporal) method. New features include the following: (i) an improved method for accounting for missing data; (ii) options for screening out rare alleles; (iii) confidence intervals for all methods; (iv) the ability to analyse data sets with large numbers of genetic markers (10 000 or more); (v) options for batch processing large numbers of different data sets, which will facilitate cross-method comparisons using simulated data; and (vi) correction for temporal estimates when individuals sampled are not removed from the population (Plan I sampling). The user is given considerable control over input data and composition, and format of output files. The freely available software has a new JAVA interface and runs under MacOS, Linux and Windows.
ldne is a program with a Visual Basic interface that implements a recently developed bias correction for estimates of effective population size (Ne) based on linkage disequilibrium data. The program reads genotypic data in standard formats and can accommodate an arbitrary number of samples, individuals, loci, and alleles, as well as two mating systems: random and lifetime monogamy. ldne calculates separate estimates using different criteria for excluding rare alleles, which facilitates evaluation of data for highly polymorphic markers such as microsatellites. The program also introduces a jackknife method for obtaining confidence intervals that appears to perform better than parametric methods currently in use.
Genetic methods are routinely used to estimate contemporary effective population size (Ne) in natural populations, but the vast majority of applications have used only the temporal (two-sample) method. We use simulated data to evaluate how highly polymorphic molecular markers affect precision and bias in the single-sample method based on linkage disequilibrium (LD). Results of this study are as follows: (1) Low-frequency alleles upwardly bias , but a simple rule can reduce bias to
The concept of effective population size (Ne) was developed under a discrete-generation model, but most species have overlapping generations. In the early 1970s, J. Felsenstein and W. G. Hill independently developed methods for calculating Ne in age-structured populations; the two approaches produce the same answer under certain conditions and have contrasting advantages and disadvantages. Here, we describe a hybrid approach that combines useful features of both. Like Felsenstein's model, the new method is based on age-specific survival and fertility rates and therefore can be directly applied to any species for which life table data are available. Like Hill, we relax the restrictive assumption in Felsenstein's model regarding random variance in reproductive success, which allows more general application. The basic principle underlying the new method is that age structure stratifies a population into winners and losers in the game of life: individuals that live longer have more opportunities to reproduce and therefore have a higher mean lifetime reproductive success. This creates different classes of individuals within the population, and grouping individuals by age at death provides a simple means of calculating lifetime variance in reproductive success of a newborn cohort. The new method has the following features: (1) it can accommodate unequal sex ratio and sex-specific vital rates and overdispersed variance in reproductive success; (2) it can calculate effective size in species that change sex during their lifetime; (3) it can calculate Ne and the ratio Ne/N based on various ways of defining N; (4) it allows one to explore the relationship between Ne and the effective number of breeders per year (Nb), which is a quantity that genetic estimators of contemporary Ne commonly provide information about; and (5) it is implemented in freely available software (AgeNe).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.