This paper presents the design and implementation of a miniaturized high-voltage power supply with power factor correction (PFC) for atmospheric-pressure plasma jet (APPJ) applications. The sinusoidal output frequency and voltage of the power supply can be controlled independently from 16 to 24 kHz and from 1 to 10 kVpeak, respectively. A helium APPJ load is used to assess the performance of the developed power supply. It is shown that the developed high-voltage power supply operates effectively, and the designed PFC converter improves the input current distortion of the power supply. Not only the power factor of the power supply is increased from 0.41 to 0.95, but it also provides a low-ripple DC voltage, which reduces the high-voltage ripple of the output from 730 to 50 Vp-p. In this paper, the proposed design integrates the PFC converter into the high-voltage power supply so that the developed power supply has better electrical characteristics and the overall power supply can be significantly miniaturized.
In this study, we would like to develop a portable round argon atmospheric-pressure plasma jet (APPJ) which can be applied for general use of bacteria inactivation. The APPJ was characterized electrically and optically, which include measurements of absorption power, gas temperature and optical properties of plasma generated species. Measured OH* number density at 5 mm downstream was estimated to be 5.8 × 1015 cm−3 and the electron density and electron temperature were estimated to be 2.4 × 1015 cm−3 and 0.34 eV, respectively, in the discharge region. This APPJ was demonstrated to effectively inactivate E. coli within seconds of treatment, which shows its great potential in the future use of general bacteria inactivation and sterilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.