Most polymers solidify into a glassy amorphous state, accompanied by a rapid increase in the viscosity when cooled below the glass transition temperature (T(g)). There is an ongoing debate on whether the T(g) changes with decreasing polymer film thickness and on the origin of the changes. We measured the viscosity of unentangled, short-chain polystyrene films on silicon at different temperatures and found that the transition temperature for the viscosity decreases with decreasing film thickness, consistent with the changes in the T(g) of the films observed before. By applying the hydrodynamic equations to the films, the data can be explained by the presence of a highly mobile surface liquid layer, which follows an Arrhenius dynamic and is able to dominate the flow in the thinnest films studied.
Two-dimensional (2D) intrinsic ferromagnetic (FM) semiconductors are crucial to develop lowdimensional spintronic devices. Using density functional theory, we show that single-layer chromium trihalides (SLCTs) (CrX3,X=F, Cl, Br and I) constitute a series of stable 2D intrinsic FM semiconductors. A free-standing SLCT can be easily exfoliated from the bulk crystal, due to a low cleavage energy and a high in-plane stiffness. Electronic structure calculations using the HSE06 functional indicate that both bulk and single-layer CrX3 are half semiconductors with indirect gaps and their valence bands and conduction bands are fully spin-polarized in the same spin direction. The energy gaps and absorption edges of CrBr3 and CrI3 are found to be in the visible frequency range, which implies possible opt-electronic applications. Furthermore, SLCTs are found to possess a large magnetic moment of 3µB per formula unit and a sizable magnetic anisotropy energy. The magnetic exchange constants of SLCTs are then extracted using the Heisenberg spin Hamiltonian and the microscopic origins of the various exchange interactions are analyzed. A competition between a near 90 • FM superexchange and a direct antiferromagnetic (AFM) exchange results in a FM nearestneighbour exchange interaction. The next and third nearest-neighbour exchange interactions are found to be FM and AFM respectively and this can be understood by the angle-dependent extended Cr-X-X-Cr superexchange interaction. Moreover, the Curie temperatures of SLCTs are also predicted using Monte Carlo simulations and the values can further increase by applying a biaxial tensile strain. The unique combination of robust intrinsic ferromagnetism, half semiconductivity and large magnetic anisotropy energies renders the SLCTs as promising candidates for next-generation semiconductor spintronic applications.
A microscopic understanding of the growth mechanism of two-dimensional materials is of particular importance for controllable synthesis of functional nanostructures. Because of the lack of direct and insightful observations, how to control the orientation and the size of two-dimensional material grains is still under debate. Here we discern distinct formation stages for MoS2 flakes from the thermolysis of ammonium thiomolybdates using in situ transmission electron microscopy. In the initial stage (400 °C), vertically aligned MoS2 structures grow in a layer-by-layer mode. With the increasing temperature of up to 780 °C, the orientation of MoS2 structures becomes horizontal. When the growth temperature reaches 850 °C, the crystalline size of MoS2 increases by merging adjacent flakes. Our study shows direct observations of MoS2 growth as the temperature evolves, and sheds light on the controllable orientation and grain size of two-dimensional materials.
We propose an interacting lattice gas model of structural glass characterized by particle distinguishability and site-particle-dependent random nearest-neighboring particle interactions. This incorporates disorder quenched in the configuration space rather than in the physical space. The model exhibits non-trivial energetics while still admitting exact equilibrium states directly constructible at arbitrary temperature and density. The dynamics is defined by activated hopping following standard kinetic Monte Carlo approach without explicit facilitation rule. Kinetic simulations show emergent dynamic facilitation behaviors in the glassy phase in which motions of individual voids are significant only when accelerated by other voids nearby. This provides a microscopic justification for the dynamic facilitation picture of structural glass.
We measured the viscosity of poly(methyl methacrylate) (PMMA) films supported by silica, where the carbonyl group on the side chains of the polymer interacts strongly with the hydroxyl groups of the surface. The result shows that the viscosity increases with decreasing film thickness at temperatures above 110 °C, but displays an opposite trend at lower temperatures. A three-layer model, consisting of a mobile top layer, a bulk-like middle layer and an immobile bottom layer was found to fit the data well. A detailed breakdown of the layer contributions to the total mobility unveils that the mobility gain brought about by the top layer is balanced by the mobility loss by the bottom layer at 110 °C. When the temperature is lowered or raised, the balance is offset, in favor, of the top and bottom layer, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.