Gold nanoparticles (Au-NPs) are being increasingly used as constituents in cosmetics, biosensors, bioimaging, photothermal therapy, and targeted drug delivery. This elevated exposure to Au-NPs poses systemic risks in humans, particularly risks associated with the biodistribution of Au-NPs and their potent interaction with biological barriers. We treated human umbilical vein endothelial cells with Au-NPs and comprehensively examined the expression levels of tight junction (TJ) proteins such as occludin, claudin-5, junctional adhesion molecules, and zonula occludens-1 (ZO-1), as well as endothelial paracellular permeability and the intracellular signaling required for TJ organization. Moreover, we validated the effects of Au-NPs on the integrity of TJs in mouse brain microvascular endothelial cells in vitro and obtained direct evidence of their influence on blood-brain barrier (BBB) permeability in vivo. Treatment with Au-NPs caused a pronounced reduction of PKCζ-dependent threonine phosphorylation of occludin and ZO-1, which resulted in the instability of endothelial TJs and led to proteasome-mediated degradation of TJ components. This impairment in the assembly of TJs between endothelial cells increased the permeability of the transendothelial paracellular passage and the BBB. Au-NPs increased endothelial paracellular permeability in vitro and elevated BBB permeability in vivo. Future studies must investigate the direct and indirect toxicity caused by Au-NP-induced endothelial TJ opening and thereby address the double-edged-sword effect of Au-NPs.
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is highly expressed in multiple organs and tissues. Whereas AhR mediates the metabolism of xenobiotic and endogenous compounds, its novel function in cancer epithelial-mesenchymal transition (EMT) remains controversial. Autophagy also participates in tumour progression through its functions in cell homeostasis and facilitates adaptation to EMT progression. In the present study, we found that AhR-regulated autophagy positively modulates EMT in non-small cell lung cancer cells. The motility of A549, H1299, and CL1-5 cells were correlated with different AhR expression levels. Invasive potential and cell morphology also changed when AhR protein expression was altered. Moreover, AhR levels exerted a contrasting effect on autophagy potential. Autophagy was higher in CL1-5 and H1299 cells with lower AhR levels than in A549 cells. Both AhR overexpression and autophagy inhibition decreased CL1-5 metastasis in vivo. Furthermore, AhR promoted BNIP3 ubiquitination for proteasomal degradation. AhR silencing in A549 cells also reduced BNIP3 ubiquitination. Taken together, these results provide a novel insight into the cross-linking between AhR and autophagy, we addressed the mechanistic BNIP3 modulation by endogenous AhR, which affect cancer cell EMT progression.
Blue light-induced phototoxicity plays an important role in retinal degeneration and might cause damage as a consequence of smartphone dependency. Here, we investigated the effects of periodic exposure to blue light-emitting diode in a cell model and a rat retinal damage model. Retinal pigment epithelium (RPE) cells were subjected to blue light in vitro and the effects of blue light on activation of key apoptotic pathways were examined by measuring the levels of Bcl-2, Bax, Fas ligand (FasL), Fas-associated protein with death domain (FADD), and caspase-3 protein. Blue light treatment of RPE cells increased Bax, cleaved caspase-3, FasL, and FADD expression, inhibited Bcl-2 and Bcl-xL accumulation, and inhibited Bcl-2/Bax association. A rat model of retinal damage was developed with or without continuous or periodic exposure to blue light for 28 days. In this rat model of retinal damage, periodic blue light exposure caused fundus damage, decreased total retinal thickness, caused atrophy of photoreceptors, and injured neuron transduction in the retina.
Diabetic retinopathy (DR), a major microvascular complication of diabetes, leads to retinal vascular leakage, neuronal dysfunction, and apoptosis within the retina. In this study, we combined STZ with whole-body hypoxia (10% O2) for quicker induction of early-stage retinopathy in C57BL/6 mice. We also compared the effects of a high glucose condition combined with hypoxia (1% O2) to a low glucose condition by using retinal pigment epithelial (RPE) cells, which are a crucial component of the outer blood-retinal barrier and the damage is related to retinopathy. In the retina of DM/hypoxic C57BL/6 mice, abnormal a-wave and b-wave activity, yellowish-white spots, hyperfluorescence, and reduced retinal thickness were found using electroretinography (ERG), fundus photography (FP), fundus fluorescein angiography (FFA), and optical coherence tomography (OCT). Shikonin dose-dependently (0.5–50 mg/kg, per os) prevented DM/hypoxia-induced lesions. In eye tissue, administration of shikonin also attenuated DM/hypoxia-induced pre-apoptotic protein BAX expression as well as the production of inflammatory proteins cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). We also demonstrated that shikonin administration rescues high glucose/hypoxia (1% O2)-induced inflammation, decreased junction protein expression, and permeability in RPE cells. These results indicate that shikonin treatment may prevent the loss of vision associated with DR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.