Crinum latifolium (CL) leaf is a source of various biologically active compounds such as alkaloid and phenolic compounds, which exhibit anti-inflammatory, antitumor, and antimicrobial effects. In the purpose of expanding applications for the field of bionanotechnology, we report biosynthesis of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) by using aqueous extract from C. latifolium leaf and explore antibacterial activity and catalytic performance for degradation of pollutants. The formation of CL-AgNPs and CL-AuNPs is confirmed and optimized by UV-visible spectroscopy with surface plasmon resonance (SPR) peaks at around 402 and 539 nm, respectively. The spherical CL-AgNPs have an average diameter of 20.5 nm and the multishaped CL-AuNPs possess an average size of 17.6 nm. The actions of four bacterial strains were strongly inhibited by using the CL-AgNPs. Furthermore, the biosynthesized metallic nanoparticles (MNPs) exhibited the excellent catalytic degradation performance of pollutants.
A series of poly-3-alkylthiophenes (P3ATs) with butyl (P3BT), hexyl (P3HT), and octyl (P3OT) sidechains and well-defined molecular weights (MWs) were synthesized using Grignard metathesis polymerization. The MWs of P3HTs and P3OTs obtained via gel permeation chromatography agreed well with the calculated MWs ranging from approximately 10 to 70 kDa. Differential scanning calorimetry results showed that the crystalline melting temperature increased with increasing MWs and decreasing alkyl side-chain length, whereas the crystallinity of the P3ATs increased with the growth of MWs. An MW-dependent red shift was observed in the UV–Vis and photoluminiscence spectra of the P3ATs in solution, which might be a strong evidence for the extended effective conjugation occurring in polymers with longer chain lengths. The photoluminescence quantum yields of pristine films in all polymers were lower than those of the diluted solutions, whereas they were higher than those of the phenyl-C61-butyric acid methyl ester-blended films. The UV–Vis spectra of the films showed fine structures with pronounced red shifts, and the interchain interaction-induced features were weakly dependent on the MW but significantly dependent on the alkyl side-chain length. The photovoltaic device performances of the P3BT and P3HT samples significantly improved upon blending with a fullerene derivative and subsequent annealing, whereas those of P3OTs mostly degraded, particularly after annealing. The optimal power conversion efficiencies of P3BT, P3HT, and P3OT were 2.4%, 3.6%, and 1.5%, respectively, after annealing with MWs of ~11, ~39, and ~38 kDa, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.