Purpose The purpose of this study is to develop a building information modelling (BIM)-based mixed reality (MR) application to enhance and facilitate the process of managing bridge inspection and maintenance works remotely from office. It aims to address the ineffective decision-making process on maintenance tasks from the conventional method which relies on documents and 2D drawings on visual inspection. This study targets two key issues: creating a BIM-based model for bridge inspection and maintenance; and developing this model in a MR platform based on Microsoft Hololens. Design/methodology/approach Literature review is conducted to determine the limitation of MR technology in the construction industry and identify the gaps of integration of BIM and MR for bridge inspection works. A new framework for a greater adoption of integrated BIM and Hololens is proposed. It consists of a bridge information model for inspection and a newly-developed Hololens application named “HoloBridge”. This application contains the functional modules that allow users to check and update the progress of inspection and maintenance. The application has been implemented for an existing bridge in South Korea as the case study. Findings The results from pilot implementation show that the inspection information management can be enhanced because the inspection database can be systematically captured, stored and managed through BIM-based models. The inspection information in MR environment has been improved in interpretation, visualization and visual interpretation of 3D models because of intuitively interactive in real-time simulation. Originality/value The proposed framework through “HoloBridge” application explores the potential of integrating BIM and MR technology by using Hololens. It provides new possibilities for remote inspection of bridge conditions.
The corrosion of prestressing steel in prestressed concrete bridges is a critical issue for bridge maintenance. To assess structures with corroded strands, it is necessary to define the mechanical properties of the strands and their influence on the structural behavior. In this study, corroded strands were taken from external tendons in existing post-tensioned concrete bridges and tested to determine the effects of corrosion on their tensile properties. Empirical equations for the tensile strength and ductility of the corroded strands were proposed using test results. The most corroded wire governs the mechanical properties of the strand. Experiments on prestressed concrete beams with a single corroded strand were conducted to investigate their structural behavior. A reduction in the flexural strength and maximum deformation was observed in these experiments. According to the section loss of a wire in a strand and its location in a beam, the flexural capacity can be evaluated using the proposed equation. The reduced ultimate strain of the corroded strand can be the governing factor of the flexural strength.
The corrosion of prestressing steel in prestressed concrete bridges is a critical issue for bridge maintenance. To assess structures with corroded strands, it is necessary to define the mechanical properties of the strands and their influence on the structural behavior. In this study, corroded strands are taken from external tendons in existing bridges and tested to define the effects of corrosion on the tensile properties of the strand. Empirical equations for the tensile strength and ductility of the corroded strand are proposed using test results. The most corroded wire governs the mechanical properties of the strand. Experiments on prestressed concrete beams with a single corroded strand are conducted to investigate the structural behavior. A reduction in the flexural strength and maximum deformation is observed from the experiment. According to the section loss of a wire in a strand and its location in a beam, the flexural capacity can be evaluated using the proposed equation. The reduced ultimate strain of the corroded strand can be the governing factor of the flexural strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.