In this study, the production of indoor humidity-buffering coatings (IHC-s) from recycling waste silica sludges by using a room-temperature sol-gel method which is a simple and energy-efficient route is reported. The properties of these IHC-s coatings are identified by scanning electron microscope, X-ray diffraction, X-ray fluorescence spectrometer, laser particle size analyzer, N2 adsorption-desorption isotherms and toxicity characteristic leaching procedure (TCLP). The moisture adsorption-desorption tests show that the IHC-s coatings have moisture buffering values of ca. 270-316 g m-2 and moisture contents of 24-27% in the range of 50-90% relative humidity (RH). Furthermore, the humidity buffering capacities, moisture adsorption-desorption rate and stability are significantly superior to commercially available coatings in the range of 50-75% RH. The enhancement may be due to the formation of porous structure in the coatings via the dispersed waste silica sludges and gypsum which transformed from bassanite by self-assembly process. Most importantly, the prepared IHC-s coatings show surpassing antimicrobial efficacy (> 99.99%) and no detectable leaching heavy metals based on TCLP tests, which provides an economic and environmental-friendly route for recovering and valorizing industrial wastes.
In this study, the production of indoor humidity-buffering coatings (IHC-s) from recycling waste silica sludges by using a room-temperature sol-gel method which is a simple and energy-efficient route is reported. The properties of these IHC-s are identified by scanning electron microscope, X-ray diffraction, X-ray fluorescence spectrometer, laser particle size analyzer, N2 adsorption-desorption isotherms and toxicity characteristic leaching procedure (TCLP). The moisture adsorption-desorption tests show that the IHC-s have moisture buffering values of ca. 270–316 g m− 2 and moisture contents of 23.6–26.7% in the range of 50–90% relative humidity (RH). Furthermore, the humidity buffering capacities, moisture adsorption-desorption rate and stability are significantly superior to commercially available coatings in the range of 50–75% RH. The enhancement may be due to the formation of porous structure in the coatings via the dispersed waste silica sludges and gypsum which transformed from bassanite by self-assembly process. Most importantly, the prepared IHC-s show surpassing antimicrobial efficacy (> 99.99%) and no detectable leaching heavy metals based on TCLP tests, which provides an economic and environmental-friendly route for recovering and valorizing industrial wastes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.