Vaccinia virus is a large DNA virus that infects many cell cultures in vitro and animal species in vivo.Although it has been used widely as a vaccine, its cell entry pathway remains unclear. In this study, we showed that vaccinia virus intracellular mature virions bound to the filopodia of HeLa cells and moved toward the cell body and entered the cell through an endocytic route that required a dynamin-mediated pathway but not a clathrin-or caveola-mediated pathway. Moreover, virus penetration required a novel cellular protein, vaccinia virus penetration factor (VPEF). VPEF was detected on cell surface lipid rafts and on vesicle-like structures in the cytoplasm. Both vaccinia virus and dextran transiently colocalized with VPEF, and, importantly, knockdown of VPEF expression blocked vaccinia virus penetration as well as intracellular transport of dextran, suggesting that VPEF mediates vaccinia virus entry through a fluid uptake endocytosis process in HeLa cells. Intracellular VPEF-containing vesicles did not colocalize with Rab5a or caveolin but partially colocalized with Rab11, supporting the idea that VPEF plays a role in vesicle trafficking and recycling in HeLa cells. In summary, this study characterized the mechanism by which vaccinia virus enters HeLa cells and identified a cellular factor, VPEF, that is exploited by vaccinia virus for cell entry through fluid phase endocytosis.The poxviruses form a group of large DNA viruses that includes variola virus, the causative agent of smallpox disease. Though smallpox itself has been eradicated, the fear of biological warfare and the recent occurrence of accidental monkeypox virus transmission between species (22) and of eczema vaccinatum (33) have alerted us to the potential danger of new emerging diseases. In addition, the potential applications of poxviruses as improved vaccines (34) and as oncolytic agents for cancer therapy (57) have raised new interest in poxvirus biology.Vaccinia virus, the well-studied prototype of the Orthopoxvirus genus in the family Poxviridae, has a wide range of infectivity in many cell lines and animals (20). It produces several forms of infectious particles, of which the vaccinia intracellular mature virus (IMV) is the most abundant in cells (see reference 14 and references therein). An IMV is enclosed by a single envelope and contains more than 70 viral proteins (11,45,65).The molecular mechanism of vaccinia IMV entry remains largely unknown. IMV binds to ubiquitous cellular attachment factors, such as glycosaminoglycans (12, 27) and the extracellular matrix protein laminin (10). It is not known whether IMV recognizes additional cellular coreceptors to trigger the postbinding fusion step, although virus entry through fusion with the plasma membrane (3, 9, 19, 37) or intracellular compartments (16, 58) has been reported. Interestingly, IMV has been shown to trigger cellular signaling during virus entry (2, 37, 44), but the molecular pathway of virus uptake has not been characterized.In this study, we characterized the mechanism by whi...
We have isolated a monoclonal antibody, B2, that neutralizes vaccinia virus infection. B2 reacts with a trypsin-sensitive cell surface epitope. B2 does not neutralize infection of herpes simplex virus, suggesting that the B2-reactive epitope is specifically involved in vaccinia virus entry. A survey of 12 different cell lines reveals a correlation between B2 reactivity and susceptibility to vaccinia virus infection. In addition, B2 interferes with vaccinia virus adsorption to target cells. Taken together, the B2-reactive epitope is part of a receptor that appears important for vaccinia virus entry.
The Chinese hamster ovary (CHO) cell line is nonpermissive for vaccinia virus, and translation of viral intermediate genes was reported to be blocked (A. Ramsey-Ewing and B. Moss, Virology 206:984-993, 1995). However, cells are readily killed by vaccinia virus. A vaccinia virus-resistant CHO mutant, VV5-4, was isolated by retroviral insertional mutagenesis. Parental CHO cells, upon infection with vaccinia virus, die within 2 to 3 days, whereas VV5-4 cells preferentially survive this cytotoxic effect. The survival phenotype of VV5-4 is partial and in inverse correlation with the multiplicity of infection used. In addition, viral infection fails to shut off host protein synthesis in VV5-4. VV5-4 was used to study the relationship of progression of the virus life cycle and cell fate. We found that in parental CHO cells, vaccinia virus proceeds through expression of viral early genes, uncoating, viral DNA replication, and expression of intermediate and late promoters. In contrast, we detect only expression of early genes and uncoating in VV5-4 cells, whereas viral DNA replication appears to be blocked. Consistent with the cascade regulation model of viral gene expression, we detect little intermediate-and late-gene expression in VV5-4 cells. Since vaccinia virus is known to be cytolytic, isolation of this mutant therefore demonstrates a new mode of the cellular microenvironment that affects progression of the virus life cycle, resulting in a different cell fate. This process appears to be mediated by a general mechanism, since VV5-4 is also resistant to Shope fibroma virus and myxoma virus killing. On the other hand, VV5-4 remains sensitive to cowpox virus killing. To examine the mechanism of VV5-4 survival, we investigated whether apoptosis is involved. DNA laddering and staining of apoptotic nuclei with Hoechst 33258 were observed in both CHO and VV5-4 cells infected with vaccinia virus. We concluded that the cellular pathway, which blocks viral DNA replication and allows VV5-4 to survive, is independent of apoptosis. This mutant also provides evidence that an inductive signal for apoptosis upon vaccinia virus infection occurs prior to viral DNA replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.