Type-2 fuzzy logic system (FLS) cascaded with neural network, type-2 fuzzy neural network (T2FNN), is presented in this paper to handle uncertainty with dynamical optimal learning. A T2FNN consists of a type-2 fuzzy linguistic process as the antecedent part, and the two-layer interval neural network as the consequent part. A general T2FNN is computational-intensive due to the complexity of type 2 to type 1 reduction. Therefore, the interval T2FNN is adopted in this paper to simplify the computational process. The dynamical optimal training algorithm for the two-layer consequent part of interval T2FNN is first developed. The stable and optimal left and right learning rates for the interval neural network, in the sense of maximum error reduction, can be derived for each iteration in the training process (back propagation). It can also be shown both learning rates cannot be both negative. Further, due to variation of the initial MF parameters, i.e., the spread level of uncertain means or deviations of interval Gaussian MFs, the performance of back propagation training process may be affected. To achieve better total performance, a genetic algorithm (GA) is designed to search optimal spread rate for uncertain means and optimal learning for the antecedent part. Several examples are fully illustrated. Excellent results are obtained for the truck backing-up control and the identification of nonlinear system, which yield more improved performance than those using type-1 FNN.
In order to control the nonlinear hysteretic electronic throttle adopted in modern automobiles, a new result for the tracking control of nonlinear hysteretic system is first proposed in this paper. Therefore we can realize the intelligent fuzzy logic controller in a well-behaved and systematic manner. A new closed-loop Back-propagation tuning is also proposed for the tuning of the fuzzy output membership functions to yield better tracking result. Finally, the controller synthesis is performed in a real-time environment using dSpace MicroAutobox and advanced microcontroller development board to yield excellent tracking results with cost-effective implementation.Index Terms-Electronic throttle (ET), fuzzy logic, hysteretic systems, intelligent control.
A traditional neuro-fuzzy system is transformed into an equivalent fully connected three layer neural network (NN), namely, the fully connected neuro-fuzzy inference systems (F-CONFIS). The F-CONFIS differs from traditional NNs by its dependent and repeated weights between input and hidden layers and can be considered as the variation of a kind of multilayer NN. Therefore, an efficient learning algorithm for the F-CONFIS to cope these repeated weights is derived. Furthermore, a dynamic learning rate is proposed for neuro-fuzzy systems via F-CONFIS where both premise (hidden) and consequent portions are considered. Several simulation results indicate that the proposed approach achieves much better accuracy and fast convergence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.