Smiling is an indispensable element of nonverbal social interaction. Besides, automatic distinction between spontaneous and posed expressions is important for visual analysis of social signals. Therefore, in this paper, we propose a method to distinguish between spontaneous and posed enjoyment smiles by using the dynamics of eyelid, cheek, and lip corner movements. The discriminative power of these movements, and the effect of different fusion levels are investigated on multiple databases. Our results improve the state-of-the-art. We also introduce the largest spontaneous/posed enjoyment smile database collected to date, and report new empirical and conceptual findings on smile dynamics. The collected database consists of 1240 samples of 400 subjects. Moreover, it has the unique property of having an age range from 8 to 76 years. Large scale experiments on the new database indicate that eyelid dynamics are highly relevant for smile classification, and there are age-related differences in smile dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.