β-mangostin is a dietary xanthone that has been reported to have the anticancer properties in some human cancer cell types. However, the antimetastatic effect and molecular mechanism of β-mangostin action in human hepatocellular carcinoma (HCC) cells remain unknown. In this study, we found that β-mangostin did not induce cytotoxicity in human HCC cells (SK-Hep-1, Huh-7 and HA22T/VGH cells). β-mangostin could inhibit migration and invasion of human HCC cells. Meanwhile, β-mangostin significantly decreased the protein activities and expression of matrix metalloproteinase (MMP)-2 and MMP-9 via increasing the activation of MEK1/2, ERK1/2, MEK4 and JNK1/2 signaling pathways. Furthermore, using specific inhibitor for ERK1/2 (PD98059) and JNK1/2 (JNKII) significantly restored the expression of MMP-2/-9 and invasion by β-mangostin treatment in Huh-7 cells. In addition, β-mangostin effectively restored the protein levels and transcription activity of MMP-2 and MMP-9 in siERK or siJNK-transfected Huh-7 cells, concomitantly with promotion on cell migration and invasion. Taken together, these findings are the first to demonstrate the antimetastatic activity of β-mangostin against human HCC cells, which may act as a promising therapeutic agent for the treatment of HCC.
The exact mechanism by which focal adhesion kinase (FAK) translates mechanical signals into osteogenesis differentiation in force-subjected cells has not been elucidated. The responses to different forces differ according to the origin of cells and the type of stress applied. Therefore, the recruitment of osteoclast and osteoblast progenitor cells, and the balanced activation of these cells around and within the periodontal ligament (PDL) are essential for alveolar bone remodeling. Cells within the PDL and MG63 cells were subjected to tensile forces of -100 kPa for different periods of time. At various times during the tensile force application, they were processed for the purpose of analyzing cell viability, cell cycle, and osteogenic protein. The effect of small interfering RNA transfection targeting FAK was also evaluated. Tensile force enhanced a rapid increase in the phosphorylation of FAK and up-regulated osteogenic protein expression in PDL cells, but not in MG63 cells. Transfecting PDL cells with FAK antisense oligonucleotide diminished alkaline phosphatase and osteocalcin secretion. These findings suggest that tensile force activates FAK pathways in PDL cells, which down-regulate immune cytokine and up-regulate osteogenic protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.