This paper proposes a new control design to compensate for the residual control error from charge feedback control. A part of the applied voltage is consumed by the hysteresis effect because of the nature of the piezoelectric material; moreover, this effect is difficult to overcome because it is rate dependent. This work utilizes a piezoelectric electromechanical model to propose a precompensation algorithm for a piezoelectric actuator. A nonlinear compensator can be used to treat both the hysteresis nonlinearity and the rate dependency of the system, and the adjustable parameters are specified through adaptive identification with only basic system information. The proposed design can position a piezoelectric stage with a magnifying mechanism within a few nanometers of a target, and the leftover hysteresis phenomenon is negligible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.