There has been a growing interest in seeking natural and biobased preservatives to prevent the wood from deteriorating during its service life, thereby prolonging carbon storage in buildings. This study aims to assess the in vitro and in vivo antifungal properties of epsilon poly-L-lysine (EPL), a secondary metabolite from Actinomyces, against four common wood-inhabiting fungi, including two brown-rot fungi, Gloeophyllum trabeum (GT) and Rhodonia placenta (RP), and two white-rot fungi, Trametes versicolor (TV) and Irpex lacteus (IL), which has rarely been reported. Our results indicate that these fungi responded differently due to EPL treatment. From the in vitro study, the minimal inhibitory concentration of EPL against GT, TV, and IL was determined to be 3 mg/ml, while that of RP was 5 mg/ml. EPL treatment also affects the morphology of fungal hyphae, changing from a smooth surface with a tubular structure to twisted and deformed shapes. Upon EPL treatment with wood samples (in vivo), it was found that EPL could possibly form hydrogen bonds with the hydroxy groups in wood and was uniformly distributed across the transverse section of the wood samples, as indicated by Fourier transform infrared spectroscopy and fluorescence microscopy analyses, respectively. Compared with control wood samples with a mass loss of over 15% across different fungi, wood samples treated with 1% EPL showed negligible or very low (<8%) mass loss. In addition, the thermal stability of EPL-treated wood was also improved by 50%. This study suggests that EPL could be a promising alternative to traditional metallic-based wood preservatives.
Soil physical and chemical properties play important roles in mass loss during soil–block tests but the relationship between soil properties and the decay caused by brown-rot and white-rot fungi remains unclear. The objective of this study was to investigate the soil effects on the decay resistance of pine (Pinus spp.) and poplar (Liriodendron tulipifera L.) blocks. The properties of soil from nine different sources (six from Idaho, one from Mississippi, one from Wisconsin, and one from Oregon) were characterized for soil texture, sieved bulk density, water-holding capacity, pH, organic matter, and carbon and nitrogen concentrations. The moisture content and mass loss of decayed wood samples after 8 weeks of fungal exposure were measured. At the end of the study, block moisture ranged from 30 to 200 percent and mass loss ranged from 20 to 60 percent. Despite using a range of soils, there were no direct correlations between soil properties and wood-block moisture content or mass loss. Moreover, among all the soil properties examined, no significant effect of a single soil property on wood-block moisture content and mass loss was measured. Instead, the combined effects of soil physical and chemical properties may interact to govern the decay of wood blocks in the laboratory soil–block test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.