It is commonly believed that large dielectric constants are required for efficient charge separation in polymer photovoltaic devices. However, many polymers used in high‐performance solar cells do not possess high dielectric constants. In this work, the effect of polymer–fullerene interactions on the dielectric environment of the active layer blend and the device performance for several donor–acceptor conjugated polymer systems is investigated. It is found that, while none of the high‐performing polymers studied has a dielectric constant value larger than 3, all polymer–fullerene blends have a significantly larger dielectric constant compared to their pristine constituents. Additionally, it is found that the blend dielectric constant reaches a maximum value in fully optimized devices. Using PTB7:PC71BM blends as an example, it is showed that, in addition to a small increase in the dielectric constant, devices fabricated using the optimum processing additive concentration exhibit almost 3X larger excited state polarizability. This large increase in excited state polarizability results in a substantial difference in short‐circuit current and ultimately device performance. The results show that the excited state polarizability critically depends on polymer–fullerene interactions, and can be a leading indicator of device performance for a given material system.
As many conjugated polymer-based organic photovoltaic (OPV) materials provide substantial solar power conversion efficiencies (as high as 13%), it is important to develop a deeper understanding of how the primary repeat unit structures impact device performance. In this work, we have varied the group 14 atom (C, Si, Ge) at the center of a bithiophene fused ring to elucidate the impact of a minimal repeat unit structure change on the optical, transport, and morphological properties, which ultimately control device performance. Careful polymerization and polymer purification produced three "one-atom change" donor−acceptor conjugated alternating copolymers with similar molecular weights and dispersities. DFT calculation, absorption spectroscopy, and high-temperature solution 1 H nuclear magnetic resonance (NMR) results indicate that poly(dithienosilole-alt-thienopyrrolodione), P(DTS-TPD), and poly-(dithienogermole-alt-thienopyrrolodione), P(DTG-TPD) exhibit different rotational conformations when compared to poly(cyclopentadithiophene-alt-thienopyrrolodione), P(DTC-TPD). Solid-state 1 H MAS NMR experiments reveal that the greater probability of the anticonformation in P(DTS-TPD) and P(DTG-TPD) prevail in the solid phase. The conformational variation seen in solution and solid-state NMR in turn affects the polymer stacking and intermolecular interaction. Twodimension 1 H-1 H DQ-SQ NMR correlation spectra shows aromatic−aromatic correlations for P(DTS-TPD) and P(DTG-TPD), which on the other hand is absent for P(DTC-TPD). In a thin-film interchain packing study using grazing incidence wide-angle X-ray scattering (GIWAXS), we observe the π-face of the conjugated backbones of P(DTC-TPD) aligned edge-on to the substrate, whereas in contrast the π-faces of P(DTS-TPD) and P(DTG-TPD) align parallel to the surface. These differences in polymer conformations and backbone orientations lead to variations in the OPV performance of blends with the fullerene PC 71 BM, with the device containing P(DTC-TPD):PCBM having a lower fill factor and a lower power conversion efficiency. Ultrafast transient absorption spectroscopy shows the P(DTC-TPD):PCBM blend to have a more pronounced triplet formation from bimolecular recombination of initially separated charges. With a combination of sub-bandgap external quantum efficiency measurements and DFT calculations, we present evidence that the greater charge recombination loss is the result of a lower lying triplet energy level for P(DTC-TPD), leading to a higher rate of recombination and lower OPV device performance. Importantly, this study ties ultimate photovoltaic performance to morphological features in the active films that are induced from the processing solution and are a result of minimal one-atom differences in polymer repeat unit structure.
Interfaces between donor and acceptor in a polymer solar cell play a crucial role in exciton dissociation and charge photogeneration. While the importance of charge transfer (CT) excitons for free carrier generation is intensively studied, the effect of blending on the nature of the polymer excitons in relation to the blend nanomorphology remains largely unexplored. In this work, electroabsorption (EA) spectroscopy is used to study the excited-state polarizability of polymer excitons in several polymer:fullerene blend systems, and it is found that excited-state polarizability of polymer excitons in the blends is a strong function of blend nanomorphology. The increase in excited-state polarizability with decreased domain size indicates that intermixing of states at the interface between the donor polymers and fullerene increases the exciton delocalization, resulting in an increase in exciton dissociation efficiency. This conclusion is further supported by transient absorption spectroscopy and time-resolved photoluminescence measurements, along with the results from time-dependent density functional theory calculations. These findings indicate that polymer excited-state polarizability is a key parameter for efficient free carrier generation and should be considered in the design and development of high-performance polymer solar cells.
The performance of devices relying on organic electronic materials, such as organic field-effect transistors (OFET) and organic photovoltaics (OPV), is strongly correlated to the morphology of the conjugated material in thin films. For instance, several factors such as polymer solubility, weak intermolecular forces between polymers and fullerene derivatives, and film drying time impact phase separation in the active layer of a bulk heterojunction OPV device. In an effort to probe the influence of polymer assembly on morphology of polymer thin films and phase separation with fullerene derivatives, five terthiophene-alt-isoindigo copolymers were synthesized with alkyl side-chains of varying lengths and branching on the terthiophene unit. These P[T3(R)-iI] polymers were designed to have similar optoelectronic properties but different solubilities in o-dichlorobenzene and were predicted to have different tendencies for crystallization. All polymers with linear alkyl chains exhibit similar thin film morphologies as investigated by grazing-incidence wide-angle X-ray scattering (GIWAXS) and atomic force microscopy (AFM). The main differences in electronic and morphological properties arise when P[T3(R)-iI] is substituted with branched 2-ethylhexyl (2EH) side-chains. The bulky 2EH substituents lead to a blue-shifted absorption, a lower ionization potential, and reduced ordering in polymer thin films. The five P[T3-iI] derivatives span hole mobilities from 1.5 × 10 to 2.8 × 10 cm V s in OFET devices. In OPV devices, the 2EH-substituted polymers yield open-circuit voltages of 0.88 V in BHJ devices yet low short-circuit currents of 0.8 mA cm, which is explained by the large phase separation observed by AFM in blends of P[T3(2EH)-iI] with PCBM. In these P[T3(R)-iI] systems, the propensity for the polymers to self-assemble prior to aggregation of PCBM molecules was key to achieving fine phase separation and increased short-circuit currents, eventually resulting in power conversion efficiencies of 5% in devices processed using a single solvent.
A family of dioxythiophene (DOT)-based conjugated random copolymers, capable of reversibly switching between a neutral black and an oxidized transmissive state, are reported for electrochromic (EC) applications. By replacing 3,4-ethylenedioxythiophene (EDOT) in the previous generation of a core donor–acceptor–donor (D–A–D) terheterocycle with a methyl-alkylated 3,4-propylenedioxythiophene (ProDOT), we enhance the solubility of precursors and monomers in this new generation of broadly absorbing electrochromic polymers (ECPs). By adjusting the newly designed terheterocycle monomer feed ratio, we obtain three polymers with varying hues of color neutrality (a* and b* < ±10) throughout the entire switching voltage range and with integrated contrasts 45–49% throughout the visible region (380–700 nm). The a* values of the polymers ranged between −8 (green hue) and +5 (red hue), with their b* values ranging between −4 and −7 (blue hue) in their neutral states; additionally, the a* and b* values are all below ±8 in their oxidized states. In electrochromic devices (ECDs), we exploit this variation in color hue to achieve color balance with the counter electrode materiala minimal color-changing polymer (MCCP) that is colorless in its fully neutral and oxidized states but light red at intermediate potentials. This red hue was balanced by the green hue of ECP–Random40, leading to an ECD that was color-neutral (a* ranging from −0.8 to −11 and b* ranging from −0.5 to 1.7) throughout the switching voltage range. This family of high-contrast and color-neutral ECPs are scalable with high yielding syntheses for all monomers due to the enhancement of monomer solubility and the usage of commonly available DOT moieties, which will aid in advancing the development of large-scale polymer-based EC window and display applications. This method provides materials that switch from black to transmissive through only gray intermediates as needed for switchable color tinting applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.