A series of new amino (NH)-type hydrogen-bonding (H-bonding) compounds comprising 2-(2'-aminophenyl)benzothiazole and its extensive derivatives were designed and synthesized. Unlike in the hydroxyl (OH)-type H-bonding systems, one of the amino hydrogens can be replaced with electron-donating/withdrawing groups. This, together with a versatile capability for modifying the parent moiety, makes feasible the comprehensive spectroscopy and dynamics studies of amino-type excited-state intramolecular proton transfer (ESIPT), which was previously inaccessible in the hydroxyl-type ESIPT systems. Empirical correlations were observed among the hydrogen-bonding strength (the N-H bond distances and proton acidity), ESIPT kinetics, and thermodynamics, demonstrating a trend that the stronger N-H···N hydrogen bond leads to a faster ESIPT, as experimentally observed, and a more exergonic reaction thermodynamics. Accordingly, ESIPT reaction can be harnessed for the first time from a highly endergonic type (i.e., prohibition) toward equilibrium with a measurable ESIPT rate and then to the highly exergonic, ultrafast ESIPT reaction within the same series of amino-type intramolecular H-bond system.
Facile derivation of 10-aminobenzo[h]quinoline via replacing one of the N-H hydrogen atoms by various substituents generates a new series of excited-state intramolecular N-H proton-transfer molecules, for which the proton-transfer emission can be widely tuned from 590 nm to 770 nm simply by harnessing the electron-donating/withdrawing strength of the substituents.
Studies have been carried out to gain insight in to an overall excited-state proton transfer cycle for a series of N-tosyl derivatives of 2-(2'-aminophenyl)benzothiazole. The results indicate that followed by ultrafast (<150 fs) excited-state intramolecular proton transfer (ESIPT), the titled compounds undergo rotational isomerization along the C1-C1' bond. For the model compound 2-(2'-tosylaminophenyl)benzothiazole (PBT-NHTs) the subsequent cis-trans isomerization process in both triplet and ground states are probed by nanosecond transient absorption (TA) and two-step laser-induced fluorescence (TSLIF) spectroscopy. Both TA and TSLIF results indicate the existence of a long-lived trans-tautomer species in the ground state with a lifetime of few microseconds. The experimental results correlate well with the theoretical approach, which suggests that PBT-NHTs proton transfer tautomer generated in the excited state undergoes intramolecular C1-C1' rotation to ∼100° between benzothiazole and phenyl moieties in which the energetics for the S1 and T1 states are nearly identical. As a result, the intersystem crossing between S1 and T1 states serves as a fast deactivation pathway for the excited-state cis-tautomer to channel into both cis- and trans-tautomer in their respective T1 states, followed by the dominant T1-S0 radiationless deactivation to populate the trans-tautomer in the ground state. The trans-tautomer species in the S0 state proceeds with intermolecular double proton transfer to regenerate the cis-normal form. An overall proton-transfer cycle describing the amino-type ESIPT and the subsequent isomerization processes is thus depicted in detail.
7‐Aminoquinoline (7AQ) and various amino derivatives thereof (‐NHR) have been strategically designed and synthesized to study their excited‐state proton‐transfer (ESPT) properties. Due to the large separation between the proton donor ‐NHR and the acceptor ‐N‐ site, ESPT in 7AQ derivatives, if available, should proceed under protic solvent catalysis. ESPT is found to be influenced by the acidity of ‐NHR and the basicity of the proton‐acceptor ‐N‐ in the quinoline moiety. The latter is varied by the resonance effect at the quinoline ‐N‐ site induced by the ‐NHR substituent. For those 7AQ derivatives undergoing ESPT, increased quinoline basicity results in a faster rate of ESPT, implying that proton donation from methanol to the quinoline moiety may serve as a key step in the process. Our studies also indicate the existence of an equilibrium between cis and trans arrangements of ‐NHR in terms of its hydrogen‐bond (H‐bond) configuration with methanol, whereby only the cis‐H‐bonded form undergoes methanol‐assisted ESPT. With one exception, the interconversion between cis and trans configurations is much faster than the rate of ESPT, yielding amino‐type (normal form) and imine‐type (proton‐transfer tautomer) emissions with distinct relaxation dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.