Little information is available concerning multidrug resistance (MDR) in mesenchymal stem cells, although several studies have reported that MDR is associated with hyaluronan in neoplastic cells. We have evaluated whether a hyaluronan-coated surface modulates MDR in placenta-derived human mesenchymal stem cells (PDMSCs). We have found that PDMSCs cultured on a tissue-culture polystyrene surface coated with 30 microg/cm(2) hyaluronan are more resistant than control PDMSCs to doxorubicin. Inhibiting PI3K/Akt signaling has shown that the PI3K/Akt pathway modulates both P-glycoprotein activity and doxorubicin resistance. In addition, 10 microM verapamil dramatically suppresses the doxorubicin resistance induced by the hyaluronan-coated surface, indicating that P-glycoprotein activity is necessary for MDR. We have further found that PDMSCs treated with CD44 small interfering RNA (siRNA) and grown on a polystyrene surface coated with 30 microg/cm(2) hyaluronan have fewer P-glycoprotein(+) cells and lower CD44 expression levels (less than 60% in both cases) than PDMSCs not treated with CD44 siRNA and grown on the hyaluronan-coated surface. Moreover, treatment with CD44 siRNA suppresses the hyaluronan-substratum-induced doxorubicin resistance. We conclude that a hyaluronan substratum induces MDR in PDMSCs through CD44 signaling.
We examined, in vitro, whether hyaluronan induces slow cycling in placenta-derived mesenchymal stem cells (PDMSCs) by comparing cell growth on a hyaluronan-coated surface with cell growth on a tissue-culture polystyrene surface. The hyaluronan-coated surface significantly downregulated the proliferation of PDMSCs, more of which were maintained in the G(0)/G(1) phases than were cells on the tissue-culture polystyrene surface. Both PKH-26 labeling and BrdU incorporation assays showed that most PDMSCs grown on a hyaluronan-coated surface duplicated during cultivation indicating that the hyaluronan-coated surface did not inhibit PDMSCs from entering the cell cycle. Mitotic synchronization showed that the G(1)-phase transit was prolonged in PDMSCs growing on a hyaluronan-coated surface. Increases in p27(Kip1) and p130 were the crucial factors that allowed hyaluronan to lengthen the G(1) phase. Thus, hyaluronan might be a promising candidate for maintaining stem cells in slow-cycling mode by prolonging their G(1)-phase transit.
Liposomes can selectively target cancer sites and carry payloads, thereby improving diagnostic and therapeutic effectiveness and reducing toxicity. To evaluate therapeutic strategies, it is essential to use animal models reflecting important safety aspects before clinical application. The objective of this study was to investigate acute radiotoxicity of ¹⁸⁸Re-N,N-bis (2-mercaptoethyl)-N',N'-diethylethylenediamine (BMEDA)-labeled pegylated liposomes (¹⁸⁸Re-BMEDA-liposome) in Sprague-Dawley rats. Rats were administered with ¹⁸⁸Re-BMEDA-liposome, normal saline as blank or non-radioactive liposome as vehicle control via intravenous injection and observed for 14 days. Examinations were conducted with respect to mortality, clinical signs, food consumption, body weight and hematological and biochemical analyses. In addition, gross necropsy, histopathological examinations and cytogenetic analyses were also performed. None of the rats died and no clinical sign was observed during the 14-day study period. Rats administered with ¹⁸⁸Re-BMEDA-liposome at dosage of 185 MBq displayed a significant weight loss compared with the control from study day (SD) 1 to SD 4, and the white blood cell count reduced to 5-10% of initial value (female: 18.55 ± 6.58 to 0.73 ± 0.26 x 10³ µl⁻¹; male: 14.52 ± 5.12 to 1.43 ± 0.54 x 10³ µl⁻¹) 7 days-post injection, but were found to have recovered on SD 15. There were no significant differences in biochemical parameters and histopathological assessments between the ¹⁸⁸Re-BMEDA-liposome-treated and control groups. The frequencies of dicentric chromosomes were associated with dosage of ¹⁸⁸Re-BMEDA-liposome. The information generated from this study on acute toxicity will serve as a safety reference for further subacute toxicity study in rats and human clinical trials.
Liposomes can selectively target cancer sites and carry payloads, thereby improving diagnostic and therapeutic effectiveness as well as reducing toxicity. To evaluate therapeutic strategies, it is essential to use animal models reflecting important safety aspects before clinical application. As our previous study found that a high dosage (185 of MBq) of (188) Re-N,N-bis (2-mercaptoethyl)-N',N'-diethylethylenediamine-labeled pegylated liposomes ((188) Re-liposome) induced a decrease in white blood cell (WBC) count in Sprague-Dawley rats 7 days postinjection, the objective of the present study was to investigate extended acute radiotoxicity of (188) Re-liposome. Rats were administered via intravenous (i.v.) injection with (188) Re-liposome (185, 55.5 and 18.5 MBq), normal saline as a blank control or non-radioactive liposome as a vehicle control. Mortality, clinical signs, food consumption, body weights, urinary, biochemical and hematological analyzes were examined. In addition, gross necropsy and histopathological examinations were also performed at the end of the follow-up period. None of the rats died and no clinical sign was observed during the 28-day study period. Only male rats receiving (188) Re-liposome at a high dosage (185 MBq) displayed a slight weight loss compared with the control rats. In both male and female rats, the WBC counts of both high-dose and medium-dose (55.5 MBq) groups reduced significantly 7 days postinjection, but recovered to the normal range on Study Day 29. There was no significant difference in urinary analyzes, biochemical parameters and histopathological assessments between the (188) Re-liposome-treated and control groups. The information generated from the present study on extended acute toxicity of (188) Re-liposome will serve as a safety reference for radiopharmaceuticals in early-phase clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.