The branching of an RNA molecule is an important structural characteristic yet difficult to predict correctly, especially for longer sequences. Using plane trees as a combinatorial model for RNA folding, we consider the thermodynamic cost, known as the barrier height, of transitioning between branching configurations. Using branching skew as a coarse energy approximation, we characterize various types of paths in the discrete configuration landscape. In particular, we give sufficient conditions for a path to have both minimal length and minimal branching skew. The proofs offer some biological insights, notably the potential importance of both hairpin stability and domain architecture to higher resolution RNA barrier height analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.