The Bragg reflections of oblique water waves by periodic surface-piercing structures over periodic bottoms are investigated using the eigenfunction matching method (EMM). Based on the assumption of small wave amplitude, the linear wave theory is employed in the solution procedure. In the step approximation, the surface-piercing structures and the bottom profiles are sliced into shelves separated by abrupt steps. For each shelf, the solution is composed of eigenfunctions with unknown coefficients representing the wave amplitudes. Upon applying the conservations of mass and momentum, a system of linear equations is obtained and is then solved by a sparse-matrix solver. The proposed EMM is validated by several examples in the literature. Then, the method is applied to solve Bragg reflections of oblique water waves by various surface-piercing structures over periodic bottoms. From the numerical experiments, Bragg’s law of oblique waves was used to predict the occurrences of Bragg resonance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.