The response of the dual resonant bands of a fibre optic long period grating operating near the phase matching turning point to the deposition of a nanostructured coating is investigated. The dual resonant bands are observed to show a high sensitivity to the thickness of the coating, but with opposite signs. Appropriate design of the device, based on the grating period, the refractive index and thickness of the coating and the fibre composition, can allow the sensitivity of the device to the optical thickness to be optimized. A sensitivity of 1.45 nm / nm is observed experimentally.
Abstract:In the last 10 years, Optical Coherence Tomography (OCT) has been successfully applied to art conservation, history and archaeology. OCT has the potential to become a routine non-invasive tool in museums allowing cross-section imaging anywhere on an intact object where there are no other methods of obtaining subsurface information. While current commercial OCTs have shown potential in this field, they are still limited in depth resolution (> 4 μm in paint and varnish) compared to conventional microscopic examination of sampled paint cross-sections (~1 μm). An ultrahigh resolution fiber-based Fourier domain optical coherence tomography system with a constant axial resolution of 1.2 μm in varnish or paint throughout a depth range of 1.5 mm has been developed. While Fourier domain OCT of similar resolution has been demonstrated recently, the sensitivity roll-off of some of these systems are still significant. In contrast, this current system achieved a sensitivity roll-off that is less than 2 dB over a 1.2 mm depth range with an incident power of ~1 mW on the sample. The high resolution and sensitivity of the system makes it convenient to image thin varnish and glaze layers with unprecedented contrast. The non-invasive 'virtual' cross-section images obtained with the system show the thin varnish layers with similar resolution in the depth direction but superior clarity in the layer interfaces when compared with conventional optical microscope images of actual paint sample cross-sections obtained microdestructively.
A 220 nm bandwidth supercontinuum source in the two-micron wavelength range has been developed for use in a Fourier domain optical coherence tomography (FDOCT) system. This long wavelength source serves to enhance probing depth in highly scattering material with low water content. We present results confirming improved penetration depth in high opacity paint samples while achieving the high axial resolution needed to resolve individual paint layers. This is the first FDOCT developed in the 2 μm wavelength regime that allows fast, efficient capturing of 3D image cubes at a high axial resolution of 13 μm in air (or 9 μm in paint). tomography imaging of human tissue at 1.55 μm and 1.81 μm using Er-and Tm-doped fiber sources," J.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.