Rigid polyurethane foam (PUF) was successfully prepared from a novel oligo-ester-ether-diol obtained from the glycolysis of waste poly(ethylene terephthalate) (PET) bottles via reaction with diethylene glycol (DEG) in the presence of ZnSO4 7H2O. The LC-MS analysis of the oligodiol enabled us to identify 67 chemical homologous structures that were composed of zero to four terephthalate (T) ester units and two to twelve monoethylene glycol (M) ether units. The flame retardant, morphological, compression, and thermal properties of rigid PUFs with and without triphenyl phosphate (TPP) were determined. The Tg values showed that TPP played a role of not only being a flame retardant, but also a plasticizer. PUF with a rather low TPP loading had an excellent flame retardancy and high thermal stability. A loading of 10 wt % TPP not only achieved a UL-94 V-0 rating, but also obtained an LOI value of 21%. Meanwhile, the PUF without a flame retardant did not achieve a UL-94 HB rating; the sample completely burned to the holder clamp and yielded a low LOI value (17%). The fire properties measured with the cone calorimeter were also discussed, and the results further proved that the flame retardancy of the PUF with the addition of TPP was improved significantly. The polymeric material meets the demands of density and compression strength for commercial PUF, as well as the needs of environmental development. The current study may help overcome the drawback of intrinsic high flammability and enlarge the fire safety applications of materials with a high percentage of recycled PET.
The thermal stabilities, flame retardancies, and physico-mechanical properties of rice husk-reinforced polyurethane (PU–RH) foams with and without flame retardants (FRs) were evaluated. Their flammability performances were studied by UL94, LOI, and cone calorimetry tests. The obtained results combined with FTIR, TGA, SEM, and XPS characterizations were used to evaluate the fire behaviors of the PU–RH samples. The PU–RH samples with a quite low loading (7 wt%) of aluminum diethylphosphinate (OP) and 32 wt% loading of aluminum hydroxide (ATH) had high thermal stabilities, excellent flame retardancies, UL94 V-0 ratings, and LOIs of 22%–23%. PU–RH did not pass the UL94 HB standard test and completely burned to the holder clamp with a low LOI (19%). The cone calorimetry results indicated that the fireproof characteristics of the PU foam composites were considerably improved by the addition of the FRs. The proposed flame retardancy mechanism and cone calorimetry results are consistent. The comprehensive FTIR spectroscopy, TG, SEM, and XPS analyses revealed that the addition of ATH generated white solid particles, which dispersed and covered the residue surface. The pyrolysis products of OP would self-condense or react with other volatiles generated by the decomposition of PU–RH to form stable, continuous, and thick phosphorus/aluminum-rich residual chars inhibiting the transfer of heat and oxygen. The PU–RH samples with and without the FRs exhibited the normal isothermal sorption hysteresis effect at relative humidities higher than 20%. At lower values, during the desorption, this effect was not observed, probably because of the biodegradation of organic components in the RH. The findings of this study not only contribute to the improvement in combustibility of PU–RH composites and reduce the smoke or toxic fume generation, but also solve the problem of RHs, which are abundant waste resources of agriculture materials leading to the waste disposal management problems.
This study focused on the burning phenomena, thermal stability, and physicomechanical properties of polyurethane foam based on recycled poly(ethylene terephthalate) (RPUF) with and without halogen‐free flame retardants (FRs). Flammability behavior and associated mechanisms were studied by cone calorimetry, LOI, UL 94, FTIR, TGA, FE‐SEM, and XPS. The results of cone calorimeter testing indicate improved FR performance with notable reductions in peak heat release rate (~39.1%), peak CO production (~61.7%), and peak CO2 production (~43.0%). LOI values significantly increase, up to 29.5–47.1%, in the presence of FRs, and V‐0 ratings are attained even at a rather low loading of FR (6.07 wt%). Meanwhile, the RPUF completely burns to the holder clamp with a low LOI value (17%), and it do not pass the UL94 HB standard. The addition of FRs notably improves the residual char of RPUF, indicating that FRs contributed to the formation of a barrier layer to protect RPUF during degradation. The comparison between experimentally determined TGA results and calculated values provides support for the effect of FRs on the thermal degradation behavior of RPUF. Sorption isotherm experiments of RPUF/FR systems show low moisture absorptivity and a weak hysteresis effect due to strong intermolecular bonds between RPUF and added FRs. The compression test, density, and morphology of foam samples are also discussed.
The chemical recycling of postconsumer poly-(ethylene terephthalate) (PET) bottles to produce highly thermally stable polyurethane foam (r-PUF) with excellent flame-retardant (FR) performance could be applied on an industrial scale to create a sustainable recycling industry. The advantage of oligo-ester-ether-diol obtained from waste PET glycolysis is its application in r-PUF, generating a durable foam with excellent fire resistance at rather low loadings of phosphorus− nitrogen FRs (P−N FRs), especially in high moisture environments. Compared to polyurethane foam from commercial polyol (c-PUF), r-PUF is notably more thermally stable and efficient in terms of flame retardancy, even without adding FRs. By incorporating 15 php diammonium phosphate (DAP) as a P−N FR, r-PUF/DAP self-extinguished 5 s after the removal of the 2nd flame application with a limited oxygen index value of 24%. However, for c-PUF, a much higher DAP (30 php) loading did not exhibit any rating in the vertical burning test. The aromatic moiety in the oligo-ester-ether-diol structure strongly enhanced the compressive strength and thermal stability. The positive outcomes of this study also confirmed that the r-PUF/DAP prepared from oligo-ester-ether-diol not only satisfied the fire safety requirements of polymer applications but also contained a high percentage of postconsumer PET, which could help reduce the amount of recycled polymer materials and improve waste management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.