A unique "clean-lifting transfer" (CLT) technique that applies a controllable electrostatic force to transfer large-area and high-quality CVD-grown graphene onto various rigid or flexible substrates is reported. The CLT technique without using any organic support or adhesives can produce residual-free graphene films with large-area processability, and has great potential for future industrial production of graphene-based electronics or optoelectronics.
The fractional quantum Hall effect is a canonical example of electron–electron interactions producing new ground states in many-body systems. Most fractional quantum Hall studies have focussed on the lowest Landau level, whose fractional states are successfully explained by the composite fermion model. In the widely studied GaAs-based system, the composite fermion picture is thought to become unstable for the N≥2 Landau level, where competing many-body phases have been observed. Here we report magneto-resistance measurements of fractional quantum Hall states in the N=2 Landau level (filling factors 4<|ν|<8) in bilayer graphene. In contrast with recent observations of particle–hole asymmetry in the N=0/N=1 Landau levels of bilayer graphene, the fractional quantum Hall states we observe in the N=2 Landau level obey particle–hole symmetry within the fully symmetry-broken Landau level. Possible alternative ground states other than the composite fermions are discussed.
A record-high efficiency (>10%) was achieved for an n-graphene/p-Si Schottky junction solar cell by using the “sunlight-activated” graphene/TiOx transparent cathode.
Gas sensors, which play an important role in the safety of human life, cover a wide range of applications including intelligent systems and detection of harmful and toxic gases. It is known that graphene is an ideal and attractive candidate for gas sensing due to its high surface area and excellent mechanical, electrical, optical, and thermal properties. However, in order to fully realize its potential as a commercial gas sensor, demand for a graphene-based device of low-limit detection, high sensitivity, and fast response time needs to be met. Here, we demonstrate a metal/insulator/semiconductor (MIS) based gas sensor consisting of as-grown epitaxial graphene nanowalls (EGNWs)/silicon carbide (SiC)/silicon (Si) structure. The unique edge dominant three-dimensional (3D) EGNWs based MIS device achieved an extraordinarily low limit of detection (0.5 ppm) and unprecedented sensitivity (82 μA/ppm/cm 2 for H 2 ) with a fast response of shorter than 500 ms. These unique properties of our MIS device are attributed to the abundance of vertically oriented nanographitic edges and structural defects that act as extrafavorable adsorption sites and exhibit fast electron-transfer kinetics through the edges. Our experimental findings can pave the way for the realization of high-performance 3D graphene-based gas sensor devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.