With the advance of social media networks, people are sharing contents in an unprecedented scale. This makes social networks such as microblogs an ideal place for spreading rumors. Although different types of information are available in a post on social media, traditional approaches in rumor detection leverage only the text of the post, which limits their accuracy in detection. In this paper, we propose a provenanceaware approach based on recurrent neural network to combine the provenance information and the text of the post itself to improve the accuracy of rumor detection. Experimental results on a real-world dataset show that our technique is able to outperform state-of-the-art approaches in rumor detection.
Classification of social media data is an important approach in understanding user behavior on the Web. Although information on social media can be of different modalities such as texts, images, audio or videos, traditional approaches in classification usually leverage only one prominent modality. Techniques that are able to leverage multiple modalities are often complex and susceptible to the absence of some modalities. In this paper, we present simple models that combine information from different modalities to classify social media content and are able to handle the above problems with existing techniques. Our models combine information from different modalities using a pooling layer and an auxiliary learning task is used to learn a common feature space. We demonstrate the performance of our models and their robustness to the missing of some modalities in the emotion classification domain. Our approaches, although being simple, can not only achieve significantly higher accuracies than traditional fusion approaches but also have comparable results when only one modality is available.
Network alignment is the task of identifying topologically and semantically similar nodes across (two) different networks. It plays an important role in various applications ranging from social network analysis to bioinformatic network interactions. However, existing alignment models either cannot handle large-scale graphs or fail to leverage different types of network information or modalities. In this paper, we propose a novel end-to-end alignment framework that can leverage different modalities to compare and align network nodes in an efficient way. In order to exploit the richness of the network context, our model constructs multiple embeddings for each node, each of which captures one modality or type of network information. We then design a late-fusion mechanism to combine the learned embeddings based on the importance of the underlying information. Our fusion mechanism allows our model to be adapted to various types of structure of the input network. Experimental results show that our technique outperforms state-of-the-art approaches in terms of accuracy on real and synthetic datasets, while being robust against various noise factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.