Background: A commonly seen issue in facial palsy patients is brow ptosis caused by paralysis of the frontalis muscle powered by the frontal branch of the facial nerve. Predominantly, static methods are used for correction. Functional restoration concepts include the transfer of the deep temporal branch of the trigeminal nerve and cross-facial nerve grafts. Both techniques can neurotize the original mimic muscles in early cases or power muscle transplants in late cases. Because axonal capacity is particularly important in cross-facial nerve graft procedures, the authors investigated the microanatomical features of the frontal branch to provide the basis for its potential use and to ease intraoperative donor nerve selection. Methods: Nerve biopsy specimens from 106 fresh-frozen cadaver facial halves were obtained. Histologic processing and digitalization were followed by nerve morphometric analysis and semiautomated axon quantification. Results:The frontal branch showed a median of three fascicles (n = 100; range, one to nine fascicles). A mean axonal capacity of 1191 ± 668 axons (range, 186 to 3539 axons; n = 88) and an average cross-sectional diameter of 1.01 ± 0.26 mm (range, 0.43 to 1.74 mm; n = 67) were noted. In the linear regression model, diameter and axonal capacity demonstrated a positive relation (n = 57; r² = 0.32; p < 0.001). Based on that equation, a nerve measuring 1 mm is expected to carry 1339 axons. Conclusion:The authors' analysis on the microanatomy of the frontal branch could promote clinical use of cross-facial nerve graft procedures in frontalis muscle neurotization and free muscle transplantations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.