Rhythmic cardiac contractions depend on the organized propagation of depolarizing and repolarizing wavefronts. Repolarization is spatially heterogeneous and depends largely on gradients of potassium currents. Gradient disruption in heart disease may underlie susceptibility to fatal arrhythmias, but it is not known how this gradient is established. We show that, in mice lacking the homeodomain transcription factor Irx5, the cardiac repolarization gradient is abolished due to increased Kv4.2 potassium-channel expression in endocardial myocardium, resulting in a selective increase of the major cardiac repolarization current, I(to,f), and increased susceptibility to arrhythmias. Myocardial Irx5 is expressed in a gradient opposite that of Kv4.2, and Irx5 represses Kv4.2 expression by recruiting mBop, a cardiac transcriptional repressor. Thus, an Irx5 repressor gradient negatively regulates potassium-channel-gene expression in the heart, forming an inverse I(to,f) gradient that ensures coordinated cardiac repolarization while also preventing arrhythmias.
Members of the Drosophila Iroquois homeobox gene family are implicated in the development of peripheral nervous system and the regionalization of wing and eye imaginal discs. Recent studies suggest that Xenopus Iroquois homeobox (Irx) genes are also involved in neurogenesis. Three mouse Irx genes, Irx1, Irx2 and Irx3, have been previously identified and are expressed with distinct spatio-temporal patterns during neurogenesis. We report here the cloning and expression analysis of two novel mouse Irx genes, Irx5 and Irx6. Although Irx5 and Irx6 proteins are structurally more related to one another, we find that Irx5 displays a developmental expression pattern strikingly similar to that of Irx3, whereas Irx6 expression resembles that of Irx1. Consistent with the notion that Mash1 is a putative target gene of the Irx proteins, all four Irx genes display an overlapping expression pattern with Mash1 in the developing CNS. In contrast, the Irx genes and Mash1 are expressed in complementary domains in the developing eye and olfactory epithelium.
In the mouse retina, at least ten distinct types of bipolar interneurons are involved in the transmission of visual signals from photoreceptors to ganglion cells. How bipolar interneuron diversity is generated during retinal development is poorly understood. Here, we show that Irx5, a member of the Iroquois homeobox gene family, is expressed in developing bipolar cells starting at postnatal day 5 and is localized to a subset of cone bipolar cells in the mature mouse retina. In Irx5-deficient mice, defects were observed in the expression of some, but not all, immunohistological markers that define mature Type 2 and Type 3 OFF cone bipolar cells, indicating a role for Irx5 in bipolar cell differentiation. The differentiation of these two bipolar cell types has previously been shown to require the homeodomain-CVC transcription factor, Vsx1. However, the defects observed in Irx5-deficient retinas do not coincide with a reduction of Vsx1 expression, and conversely, the expression of Irx5 in cone bipolar cells does not require the presence of a functional Vsx1 allele. These results indicate that there are at least two distinct genetic pathways (Irx5-dependent and Vsx1-dependent) regulating the development of Type 2 and Type 3 cone bipolar cells.
Transcriptional programs guide the specification of neural cell types in the developing nervous system. However, it is unclear whether such programs also control specific aspects of neural circuit function at maturity. In the mammalian retina, Vsx1 and Irx5 transcription factors are present in a subset of bipolar interneurons that convey signals from photoreceptors to ganglion cells. The biased expression of Vsx1 and Irx5 in hyperpolarizing OFF compared with depolarizing ON bipolar cells suggests that these transcription factors may selectively regulate signal processing in OFF circuits. To test this hypothesis, we generated mice lacking both Vsx1 and Irx5. Bipolar cells in these mice were morphologically normal, but the expression of cell-specific markers in some OFF but not ON bipolar cells was reduced or absent. To assess visual function in Vsx1 Irx5Ϫ/Ϫ retinas, we recorded light responses from ensembles of retinal ganglion cells (RGCs). We first identified functional RGC types in control mice and describe their response properties and adaptation to temporal contrast using a simple linear-nonlinear model. We found that space-time receptive fields of RGCs are unchanged in Vsx1 Irx5Ϫ/Ϫ mice compared with control retinas. In contrast, response threshold, gain, and range were lowered in a cell-type-specific manner in OFF but not ON RGCs in Vsx1 Irx5Ϫ/Ϫ retinas. Finally, we discovered that the ability to adapt to temporal contrast is greatly reduced in OFF RGCs in the double mutant, suggesting that Vsx1 and Irx5 control specific aspects of visual function in circuits of the mammalian retina.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.