Cu–Mn–Dy resistive thin films were prepared on glass and Al2O3 substrates, which wasachieved by co-sputtering the Cu–Mn alloy and dysprosium targets. The effects of the addition ofdysprosium on the electrical properties and microstructures of annealed Cu–Mn alloy films wereinvestigated. The composition, microstructural and phase evolution of Cu–Mn–Dy films werecharacterized using field emission scanning electron microscopy, transmission electronmicroscopy and X-ray diffraction. All Cu–Mn–Dy films showed an amorphous structure when theannealing temperature was set at 300 °C. After the annealing temperature was increased to 350 °C,the MnO and Cu phases had a significant presence in the Cu–Mn films. However, no MnO phaseswere observed in Cu–Mn–Dy films at 350 °C. Even Cu–Mn–Dy films annealed at 450 °C showedno MnO phases. This is because Dy addition can suppress MnO formation. Cu–Mn alloy filmswith 40% dysprosium addition that were annealed at 300 °C exhibited a higher resistivity of ∼2100 μΩ·cm with a temperature coefficient of resistance of –85 ppm/°C.
In this study, we fabricated thin-film resistors using CuMn and yttrium targets by DC/RF magnetron cosputtering. CuMnYresistive thin films were deposited onto glass and Al 2 O 3 substrates. e electrical properties and microstructures of CuMn alloy films with different yttrium content were investigated. e CuMnY films were annealed at temperature ranging from 250°C to 350°C in N 2 atmosphere. e phase variation, microstructure, film thickness, and constitutional analysis of CuMnY films were characterized using X-ray diffraction, field emission scanning, and high-resolution transmission electron microscopy and related energy dispersive X-ray analyses (XRD, FESEM, and HRTEM/EDX). It was found that CuMnY alloy films separated into two parts after annealing. e first part is the MnO phase on the bottom side of the film. e second part is an amorphous structure on the upper side of the film. e MnO phase is a microcrystalline that exists in CuMn films, which is dependent on the Y content and annealing temperature. CuMn alloy films with 15.7% yttrium addition annealed at 300°C exhibited higher resistivity ∼4000 μΩ-cm with − 41 ppm/°C of temperature coefficient of resistance (TCR).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.