We present a new approach to the problem of estimating the 3D room layout from a single panoramic image. We represent room layout as three 1D vectors that encode, at each image column, the boundary positions of floor-wall and ceiling-wall, and the existence of wall-wall boundary. The proposed network, HorizonNet, trained for predicting 1D layout, outperforms previous state-of-the-art approaches. The designed post-processing procedure for recovering 3D room layouts from 1D predictions can automatically infer the room shape with low computation cost-it takes less than 20ms for a panorama image while prior works might need dozens of seconds. We also propose Pano Stretch Data Augmentation, which can diversify panorama data and be applied to other panorama-related learning tasks. Due to the limited data available for non-cuboid layout, we relabel 65 general layout from the current dataset for finetuning. Our approach shows good performance on general layouts by qualitative results and cross-validation.
To prevent constraints or defects of a single sensor from malfunctions, this paper proposes a fire detection system based on the Dempster-Shafer theory with multi-sensor technology. The proposed system operates in three stages: measurement, data reception and alarm activation, where an Arduino is tasked with measuring and interpreting the readings from three types of sensors. Sensors under consideration involve smoke, light and temperature detection. All the measured data are wirelessly transmitted to the backend Raspberry Pi for subsequent processing. Within the system, the Raspberry Pi is used to determine the probability of fire events using the Dempster-Shafer theory. We investigate moderate settings of the conflict coefficient and how it plays an essential role in ensuring the plausibility of the system's deduced results. Furthermore, a MySQL database with a web server is deployed on the Raspberry Pi for backlog and data analysis purposes. In addition, the system provides three notification services, including web browsing, smartphone APP, and short message service. For validation, we collected the statistics from field tests conducted in a controllable and safe environment by emulating fire events happening during both daytime and nighttime. Each experiment undergoes the Nofire, On-fire and Post-fire phases. Experimental results show an accuracy of up to 98% in both the No-fire and On-fire phases during the daytime and an accuracy of 97% during the nighttime under reasonable conditions. When we take the three phases into account, the accuracy in the daytime and nighttime increase to 97% and 89%, respectively. Field tests validate the efficiency and accuracy of the proposed system. key words: multi-sensor, short message service, data fusion, Dempster-Shafer theory
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.