The proteolysis-assisted protein quality control system guards the proteome from potentially detrimental aberrant proteins. How miscellaneous defective proteins are specifically eliminated and which molecular characteristics direct them for removal are fundamental questions. We reveal a mechanism, DesCEND (destruction via C-end degrons), by which CRL2 ubiquitin ligase uses interchangeable substrate receptors to recognize the unusual C termini of abnormal proteins (i.e., C-end degrons). C-end degrons are mostly less than ten residues in length and comprise a few indispensable residues along with some rather degenerate ones. The C-terminal end position is essential for C-end degron function. Truncated selenoproteins generated by translation errors and the USP1 N-terminal fragment from post-translational cleavage are eliminated by DesCEND. DesCEND also targets full-length proteins with naturally occurring C-end degrons. The C-end degron in DesCEND echoes the N-end degron in the N-end rule pathway, highlighting the dominance of protein "ends" as indicators for protein elimination.
Shikonin, a major ingredient in the Chinese traditional herb Lithospermum erythrorhixon, exhibits multiple biological functions including antimicrobial, anti-inflammatory, and antitumor effects. In this study, we delineated the molecular mechanisms of shikonin in the apoptosis of 143B osteosarcoma cells. Shikonin reduced the cell viability of 143B cells in a dose-and time-dependent manner. The IC 50 at 24 h and 48 h for 143B cells was 4.55 and 2.01 m mM, respectively. A significantly elicited hypodiploid cell population was found in cells treated with 2, 4, and 8 m mM shikonin for 24 h. Moreover, treatment with shikonin induced reactive oxygen species (ROS) generation, increased extracellular signal-regulated kinase (ERK) phosphorylation, decreased B-cell lymphoma-2 (Bcl2) expression, and was accompanied by poly(ADP-ribose) polymerase (PARP) cleavage. Pretreatment with the antioxidant agent N-acetyl cysteine (NAC) not only reversed shikonin-induced ROS generation but also significantly attenuated the cytotoxic effects of shikonin in 143B cells. Furthermore, NAC attenuated shikonin-induced ERK phosphorylation. Taken together, our results reveal that shikonin increased ROS generation and ERK activation, and reduced Bcl2, which consequently caused the cells to undergo apoptosis. Therefore, shikonin may be a promising chemotherapeutic agent for osteosarcoma treatment.
Butein (3,4,2',4'-tetrahydroxychalcone) is a polyphenol derived from various natural plants and is capable of inducing several types of death in cancer cells. However, the molecular mechanisms underlying butein-induced breast cancer cell apoptosis remain unknown. The present study aimed to prove that butein inhibits the proliferation of MDA-MB‑231 human breast cancer cells in a dose- and time-dependent manner. Butein markedly induced the generation of reactive oxygen species (ROS), decreased the phosphorylation of extracellular signal-regulated kinase (ERK), increased p38 activity, diminished Bcl-2 expression, induced caspase 3 cleavage and was associated with poly(ADP-ribose) polymerase (PARP) cleavage. Our findings also indicate that ROS may play an important role in butein-induced apoptosis, as pre-treatment with the antioxidant, N-acetyl cysteine (NAC), prevented butein-induced apoptosis. In conclusion, our results demonstrate that butein inhibits the proliferation of breast cancer cells through the generation of ROS and the modulation of ERK and p38 activities. We also demonstrate that these effects may be abrogaged by pre-treatment with NAC. Our results suggest that butein may function as a potential therapeutic agent for the treatment of breast cancer.
Flavonoids exhibit chemopreventive and chemotherapeutic effects. Butein, a bioactive flavonoid isolated from numerous native plants, has been shown to induce apoptosis in human cancer cells. In the current study, the molecular mechanisms of butein action on cell proliferation and apoptosis of neuroblastoma cells were evaluated. Treatment with butein decreased the viability of Neuro-2A neuroblastoma cells in a dose- and time-dependent manner. The dose-dependent nature of butein-induced apoptosis was characterized by an increase in the sub-G1 phase population. Treatment with butein significantly increased intracellular reactive oxygen species (ROS)levels and reduced the Bcl-2/Bax ratio, triggering the cleavage of pro-caspase 3 and poly-(ADP-ribose) polymerase (PARP). Pre-treatment with the antioxidant agent, N-acetyl cysteine (NAC), blocks butein-induced ROS generation and cell death. NAC also recovers butein-induced apoptosis-related protein alteration. In conclusion, butein-triggered neuroblastoma cells undergo apoptosis via generation of ROS, alteration of the Bcl-2/Bax ratio, and cleavage of pro-caspase 3 and PARP. Our results suggest that butein may serve as a potential therapeutic agent for the treatment of neuroblastoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.