Liver cancer is one of the leading causes of cancer death. To assist doctors in hepatocellular carcinoma diagnosis and treatment planning, an accurate and automatic liver and tumor segmentation method is highly demanded in the clinical practice. Recently, fully convolutional neural networks (FCNs), including 2-D and 3-D FCNs, serve as the backbone in many volumetric image segmentation. However, 2-D convolutions cannot fully leverage the spatial information along the third dimension while 3-D convolutions suffer from high computational cost and GPU memory consumption. To address these issues, we propose a novel hybrid densely connected UNet (H-DenseUNet), which consists of a 2-D DenseUNet for efficiently extracting intra-slice features and a 3-D counterpart for hierarchically aggregating volumetric contexts under the spirit of the auto-context algorithm for liver and tumor segmentation. We formulate the learning process of the H-DenseUNet in an end-to-end manner, where the intra-slice representations and inter-slice features can be jointly optimized through a hybrid feature fusion layer. We extensively evaluated our method on the data set of the MICCAI 2017 Liver Tumor Segmentation Challenge and 3DIRCADb data set. Our method outperformed other state-of-the-arts on the segmentation results of tumors and achieved very competitive performance for liver segmentation even with a single model.
Training deep convolutional neural networks usually requires a large amount of labeled data. However, it is expensive and timeconsuming to annotate data for medical image segmentation tasks. In this paper, we present a novel uncertainty-aware semi-supervised framework for left atrium segmentation from 3D MR images. Our framework can effectively leverage the unlabeled data by encouraging consistent predictions of the same input under different perturbations. Concretely, the framework consists of a student model and a teacher model, and the student model learns from the teacher model by minimizing a segmentation loss and a consistency loss with respect to the targets of the teacher model. We design a novel uncertainty-aware scheme to enable the student model to gradually learn from the meaningful and reliable targets by exploiting the uncertainty information. Experiments show that our method achieves high performance gains by incorporating the unlabeled data. Our method outperforms the state-of-the-art semi-supervised methods, demonstrating the potential of our framework for the challenging semi-supervised problems 3 .
Learning and analyzing 3D point clouds with deep networks is challenging due to the sparseness and irregularity of the data. In this paper, we present a data-driven point cloud upsampling technique. The key idea is to learn multilevel features per point and expand the point set via a multibranch convolution unit implicitly in feature space. The expanded feature is then split to a multitude of features, which are then reconstructed to an upsampled point set. Our network is applied at a patch-level, with a joint loss function that encourages the upsampled points to remain on the underlying surface with a uniform distribution. We conduct various experiments using synthesis and scan data to evaluate our method and demonstrate its superiority over some baseline methods and an optimization-based method. Results show that our upsampled points have better uniformity and are located closer to the underlying surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.