To solve tea image classification problems, this study focuses on triplet loss convolutional neural network to classify six high-mountain oolong tea classes. In the experiment, instead of using traditional deep learning training approach for local feature of tea images, an innovative image verification approach is proposed to learn the global feature of tea images by integrating the distributed tea leaves’ features of all tea sub-images and using a majority voting mechanism to do classification. The results show that the proposed approach can work for small sample size dataset and have higher accuracy than normal transfer learning approach. The average accuracy of the proposed approach achieves 99.54%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.