Circulating endothelial progenitor cells (EPCs), which function in vascular repair, are the markers of endothelial dysfunction and vascular health. Fibroblast growth factor 21 (FGF21), a liver‐secreted protein, plays a crucial role in glucose homeostasis and lipid metabolism. FGF21 has been reported to attenuate the progression of atherosclerosis, but its impact on EPCs under high oxidative stress conditions remains unclear. In vitro studies showed that the β‐klotho protein was expressed in cultured EPCs and that its expression was upregulated by FGF21 treatment. Hydrogen peroxide (H2O2)‐induced oxidative stress impaired EPC function, including cell viability, migration and tube formation. Pretreatment with FGF21 restored the functions of EPCs after the exposure to H2O2. Administration of N(ω)‐nitro‐L‐arginine methyl ester (L‐NAME), an inhibitor of nitric oxide synthase, inhibited the effects of FGF21 in alleviating oxidative injury by suppressing endothelial nitric oxide synthase (eNOS). In an in vivo study, the administration of FGF21 significantly reduced total cholesterol (TC) and blood glucose levels in apolipoprotein E (ApoE)‐deficient mice that were fed a high‐fat diet (HFD). Endothelial function, as reflected by acetylcholine‐stimulated aortic relaxation, was improved after FGF21 treatment in ApoE‐deficient mice. Analysis of mRNA levels in the aorta indicated that FGF21 increased the mRNA expression of eNOS and upregulated the expression of the antioxidant genes superoxide dismutase (SOD)1 and SOD2 in ApoE‐deficient mice. These data suggest that FGF21 improves EPC functions via the Akt/eNOS/nitric oxide (NO) pathway and reverses endothelial dysfunction under oxidative stress. Therefore, administration of FGF21 may ameliorate a HFD‐induced vascular injury in ApoE‐deficient mice.
Patients with diabetes mellitus tend to develop ischemia-related complications and have compromised endothelial progenitor cell (EPC) function. Melatonin protects against ischemic injury, possibly via EPC modulation. We investigated whether melatonin pretreatment could restore EPC function impairment and improve circulation recovery in a diabetic critical limb ischemia mouse model. Under 25 mM high-glucose medium in vitro, EPC proliferation, nitric oxide production, tube formation, and endothelial nitric oxide synthase (eNOS) phosphorylation were significantly suppressed. Hyperglycemia promoted EPC senescence and apoptosis as well as increased reactive oxygen species (ROS) production. Melatonin treatment reversed the harmful effects of hyperglycemia on EPC through adenosine monophosphate–activated protein kinase-related mechanisms to increase eNOS phosphorylation and heme oxygenase-1 expression. In an in-vivo study, after a 4-week surgical induction of hindlimb ischemia, mice with streptozotocin (STZ)-induced diabetes showed significant reductions in new vessel formation, tissue reperfusion, and EPC mobilization in ischemic hindlimbs compared to non-diabetic mice. Mice with STZ-induced diabetes that received melatonin treatment (10 mg/kg/day, intraperitoneal) had significantly improved blood perfusion ratios of ischemic to non-ischemic limb, EPC mobilization, and densities of capillaries. In addition, a murine bone marrow transplantation model to support these findings demonstrated that melatonin stimulated bone marrow-originated EPCs to differentiate into vascular endothelial cells in femoral ligation-induced ischemic muscles. In summary, this study suggests that melatonin treatment augments EPC function along with neovascularization in response to ischemia in diabetic mice. We illustrated the protective effects of melatonin on EPC H2O2 production, senescence, and migration through melatonin receptors and modulating eNOS, AMPK, and HO-1 activities at the cellular level. Thus, melatonin might be used to treat the impairment of EPC mobilization and circulation recuperation in response to ischemic injury caused by chronic hyperglycemia. Additional studies are needed to elucidate the applicability of the results in humans.
Abdominal aortic aneurysm (AAA) is a multifactorial cardiovascular disease with a high risk of death, and it occurs in the infrarenal aorta with vascular dilatation. High blood pressure acts on the aortic wall, resulting in rupture and causing life-threatening intra-abdominal hemorrhage. Vascular smooth muscle cell (VSMC) dysregulation and extracellular matrix (ECM) degradation, especially elastin breaks, contribute to structural changes in the aortic wall. The pathogenesis of AAA includes the occurrence of oxidative stress, inflammatory cell infiltration, elastic fiber fragmentation, VSMC apoptosis, and phenotypic transformation. Tributyrin (TB) is decomposed by intestinal lipase and has a function similar to that of butyrate. Whether TB has a protective effect against AAA remains uncertain. In the present study, we established an AAA murine model by angiotensin II (AngII) induction in low-density lipoprotein receptor knockout (LDLR-/-) mice and investigated the effects of orally administered TB on the AAA size, ratio of macrophage infiltration, levels of matrix metalloproteinase (MMP) expression, and epigenetic regulation. TB attenuates AngII-induced AAA size and decreases elastin fragmentation, macrophage infiltration, and MMP expression in the medial layer of the aorta and reduces the levels of SBP (systolic blood pressure, p < 0.001) and MMP-2 (p < 0.02) in the serum. TB reduces the AngII-stimulated expression levels of MMP2 (p < 0.05), MMP9 (p < 0.05), MMP12, and MMP14 in human aortic smooth muscle cells (HASMCs). Moreover, TB and valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, suppress AngII receptor type 1 (AT1R, p < 0.05) activation and increase the expression of acetyl histone H3 by HDAC activity inhibition (p < 0.05). Our findings suggest that TB exerts its protective effect by suppressing the activation of HDAC to attenuate the AngII-induced AT1R signaling cascade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.