Alveolar type II epithelial cells can regulate immune responses to sepsis-induced acute lung injury. Lipopolysaccharide (LPS), an outer membrane component of Gram-negative bacteria, can cause septic shock. This study was designed to evaluate the cytotoxic effects of LPS on human alveolar epithelial A549 cells and its possible molecular mechanisms. Exposure of A549 cells to LPS decreased cell viability in concentration- and time-dependent manners. In parallel, LPS concentration- and time-dependently induced apoptosis of A549 cells. Meanwhile, LPS only at a high concentration of 10 μg/ml caused mildly necrotic insults to A549 cells. In terms of the mechanism, exposure of A549 cells to LPS increased the levels of cellular nitric oxide and reactive oxygen species (ROS). Pretreatment with N-acetylcysteine (NAC), an antioxidant, significantly lowered LPS-caused enhancement of intracellular ROS in A549 cells and simultaneously attenuated the apoptotic insults. Sequentially, treatment of A549 cells with LPS caused significant decreases in the mitochondrial membrane potential and biosynthesis of adenosine triphosphate. In succession, LPS triggered the release of cytochrome c from the mitochondria to the cytoplasm. Activities of caspase-9 and caspase-6 were subsequently augmented following LPS administration. Consequently, exposure of A549 cells induced DNA fragmentation in a time-dependent manner. Pretreatment of A549 cells with NAC significantly ameliorated LPS-caused alterations in caspase-9 activation and DNA damage. Therefore, this study shows that LPS specifically induces apoptotic insults to human alveolar epithelial cells through ROS-mediated activation of the intrinsic mitochondrion-cytochrome c-caspase protease mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.